
Programming Languages Security: A Survey For Practitioners

Nihal A. D’Cunha, Massimiliano Pala, Sean W. Smith
Department of Computer Science

Dartmouth College
nihal,pala,sws@cs.dartmouth.edu

Abstract

Security vulnerabilities, such as buffer overflows, induced by
programming errors are the fundamental cause for software
insecurity. Secure protocols and technologies have made in-
credible advances in the past few years while programmers
continue to face the same problems and predicaments during
application development. This paper focuses on programming
languages and tools that attempt to guarantee safety and secu-
rity. It surveys security vulnerabilities in programming lan-
guages, suggests safe language alternatives and reviews the
range of software solutions to the security flaws in C in an at-
tempt to provide a complete overview of the existing problems
and their possible solutions.

The intended target audiences for this paper are software
managers, developers and programmers. The paper addresses
issues related to building secure applications and writing se-
cure code by making known what choices are available when
starting out on new safety-critical projects.

1 Introduction

In today’s networked world where computers have become
ubiquitous, computer attacks have become a serious problem.
Nearly all applications nowadays need to be secure. However,
writing secure code is non-trivial. Security holes in software
are common, and the problem is growing. Programmers have
to design and write code that is robust and withstands attacks
by malicious users. There are numerous exploits and attacks
that deliberately seek out and cause exceptional or uncommon
situations, such that unwarranted privileges are obtained. Sta-
tistics from the CERT Coordination Center at Carnegie Mel-
lon University, reveal that after a marginal decrease in the
number of reported software vulnerabilities in 2003 and 2004,
reports are on the rise once again [13], as shown in Figure1.

Figure 1: Vulnerabilities reported to CERT/CC 2000-2005

In this paper we survey the issues involved in designing,
writing and implementing code that is robust against attacks.
We look at potential vulnerabilities, outline possible software
solutions and review most relevant safe programming lan-
guages.

Since C is the most prevalent language for software de-
velopment and because most other language implementations
make use of C-developed libraries, we take a detailed look at
it from a security point of view.

We enumerate vulnerabilities in C that permit several dan-
gerous exploits, making it an unsafe programming language,
and outline several tools that help detect and prevent these se-
curity flaws in C code.

The rest of the paper is organized as follows. Section2 is
a survey of the common security vulnerabilities in programs.
Section3 outlines a few modern day safe programming lan-
guages. Section4 enumerates tools that can be used to detect
and overcome security flaws in C. Finally, Section5 presents
our conclusions.

2 Survey of Vulnerabilities

Memory errors are the most commonly used means by which
attackers attempt to gain control over an application [100].

Memory-safety is therefore a prerequisite for security, and
attacks that exploit memory-safety are most often to blame for
insecurity in deployed software [93]. Attackers exploit these

1



growth
stack

arguments to function

(including buffers)

string 
growth

that contains injected
to point back into buffer

 code

function’s return address

lower addressed
memory

higher addressed 
memory

return address overwritten

saved frame pointer

local variables

Figure 2: Stack smashing

vulnerabilities, to transfer program control to code that they
have injected (which is usually to start a newshellwith root
permissions). A memory-safe program will never overwhelm
a buffer or write carelessly over memory that it is not supposed
to.

2.1 Buffer Overflows

Buffer overflows are the cause of several software vulnera-
bilities that lead to security breaches. Most buffer overflow
related problems stem from input that is not checked for san-
ity before use. In this section we analyze Stack-based and
Heap-based types of buffer overflow.

Stack-based
A buffer, which is an array of identical datatypes stored in

contiguous memory locations, is easy to overflow, as not all
programming languages implement bounds checking or main-
tain array-size information. At run-time, programs are able to
write data beyond the end of the array, overwriting adjacent
memory areas which usually contain the address to resume
execution at after a function has completed execution.

For every function call, a new stack frame is added to the
top of the stack. The stack frame contains arguments to the
function, the return address, the frame pointer, locally de-
clared variables (including buffers), and other data. When ex-
cess data is written into a buffer because proper checking is
not performed, the extra data will overflow into the adjacent
higher addressed memory. This can be abused to overwrite the
return address and hence change the flow control of the pro-
gram. When the function returns, control will be transfered
via the modified return address to a specific address which is
usually where the attacker’s code is stored, allowing it to exe-
cute with the same privileges as the exploited program. Code
that does this is said to “smash the stack” [1]. A stack smash-
ing attack is shown in Figure2.

A return-to-libcattack modifies the return address to point
to pre-existing functions (e.g., such as those in thelibc stan-

dard library) without the need to inject malicious code into the
program.

Buffer overflows can also be used to overwrite security
sensitive variables or control data stored in memory areas ad-
jacent to the buffer being overflown.

Other stacked-based exploits involve frame pointer over-
writing [49] and indirect pointer overwriting [10].

Heap-based
Dynamically allocated variables (those allocated by the

malloc() family of functions) are created on the heap seg-
ment at run-time by the application. Heap-based arrays are
overflown in a manner similar to that of stack-based arrays,
except that the heap grows from lower addressed memory to
higher addressed memory while the stack grows from higher
addressed memory to lower addressed memory. As there are
no return addresses stored on the heap, alternative methods
are used to manipulate the control-flow.

Heap memory is usually divided and allocated inchunks
which contain memory management information within them.
When a heap buffer overflow occurs, it attempts to overwrite
the memory management information of the next chunk in
memory with specific values in order to transfer control to
the attack code.

Other techniques of overflowing the heap are either by
overwriting function pointers [16] or virtual function point-
ers [75].

2.2 Dangling Pointer Errors

A dangling pointeris a reference to an object that no longer
exists at that address. Dangling pointers could arise from var-
ious conditions [57]:

• reference to an object is retained after explicit dealloca-
tion of it on callingf ree().

• reference to a stack-allocated object is retained after the
relevant stack frame has been popped.

• reference to a heap-allocated object is retained after the
relevant block has been freed and reused.

Conventionally, C compilers do not verify pointer deferences,
resulting in dangerous and elusive dangling pointer derefer-
ence vulnerabilities. Programs that deference dangling point-
ers usually crash, produce garbled output or display unpre-
dictable behavior. Although, a special case of the dan-
gling pointer reference bug called thedouble free vulner-
ability could cause memory corruption resulting in an at-
tack [41]. A double free attack could occur when a pro-
gram attempts to free memory that has already been previ-
ously deallocated [22].

2



free(x);
/ * code * /
free(x);

When a program callsfree() twice with the same ar-
gument, the heap’s memory management data structures be-
come corrupted [29]. This corruption can be exploited by an
attacker to execute arbitrary code using the privileges of the
exploited application, leading to a partial or total compromise
of the system.

2.3 Format String Bugs

Format string bugs are caused by unfiltered user input that is
passed as the format string argument to specific C formatting
functions, such as those of theprintf() family of func-
tions.

Format strings use format specifiers, such as %s, %x, and
%n, to indicate to the compiler the format of the output that
the function should produce. Format functions retrieve argu-
ments for the format specifiers off of the stack. For exam-
ple, printf(‘‘%s’’, buf) , here the stringbuf will be
popped off the stack. However if this statement is carelessly
written asprintf(buf) , thenbuf will be interpreted as a
format string, and will be parsed for any format specifiers it
might have. An attacker can take advantage of this and spec-
ify a carefully crafted format string to the format function to
control what the function pops from the stack [100].

By using the %n formatting specifier, an attacker can cause
printf() to write the number of bytes printed so far into a
location specified by a pointer argument (int *); it can be
used to write arbitrary values to arbitrary locations chosen by
the attacker.

Format string vulnerabilities can also lead to denial of ser-
vice attacks by employing numerous instances of the %s for-
mat specifier to read data off the stack until the program tries
to read from an illegal address (i.e. an unmapped address),
which will cause it to crash.

Format string bugs originate because of C’s type-unsafe
argument passing mechanisms. Neither the type nor the count
of arguments passed are checked at run-time or compile-time.
It is the responsibility of the function taking on the arguments
to pop the appropriate number, type, and order of arguments
off of the stack [17].

2.4 Integer Inaccuracies

Integer inaccuracies [5] fall into two classes:integer overflows
andinteger signednesserrors.

Integer overflow errors occur when an integer either be-
comes greater than its datatype’s maximum value or smaller

than its minimum value. If one tries to put a value into
a datatype that is too small to hold it, the high-order bits
are dropped and only the low-order bits are stored. That is,
modulo-arithmetic is performed on the value before storing it
to make sure it fits within the datatype. Most compilers tend
to disregard this overflow, causing programs that do not antic-
ipate this unexpected or inaccurate result to potentially fail.

If memory is being allocated based on an unsigned inte-
ger datatype’s value and the value wraps around, insufficient
memory might be allocated leading to a possible heap over-
flow.

Integer signednesserrors occur when an unsigned vari-
able is treated as signed, or when a signed variable is treated
as unsigned. Computers internally do not distinguish between
the way signed and unsigned variables are stored leading to
this type of insidious bug.

If a programmer passes a signed negative integer as an ar-
gument to a function expecting an unsigned value, such as
memcpy() , the signed negative integer will bypass any size
checks and be implicitly cast to an unsigned integer. This cast
will cause the value passed to wrap around and become a large
unsigned positive value. If this value is now used as the length
of bytes thatmemcpy() has to copy from source to destina-
tion it will result in memcpy() copying well past the end of
the destination buffer resulting in a buffer overflow.

Bugs could also arise if an integer overflows and wraps
around to a negative number. For example, the addition of
two large signed positive integers (say,s1 ands2 ) could wrap
around to form a negative signed integer. This negative signed
integer would pass any maximum size checks but when the
individual values ( i.e.s1 and s2 ) are used they could be
large enough to write past the end of buffers causing a buffer
overflow.

2.5 Type-cast Mismatches

Type-casting refers to converting a variable of one datatype
into another type. Conversion can be done either implicitly or
explicitly. Type-casting is risky as it occurs at run-time. For
example, C compilers only perform simple checks to ensure
that the syntax is correct, but do no additional checking to
determine if the cast is appropriate and will not cause errors.

Unsafe casts include floating-point and integer values to
characters (since all characters have an integer ASCII value),
numerical arrays to character arrays and casts between point-
ers and integers. Type-casting allows converting any pointer
into any other pointer type, independent of the datatypes they
point to. These powerful features makes it easy to control
low-level machine details at the cost of sacrificing type safety.

3



2.6 Memory Leaks

Certain programs fail to release all the memory that they allo-
cate resulting in unnecessary memory consumption over time.
This failure to deallocate needless blocks of memory is called
a memory leak. These programs will experience a degradation
in performance and will eventually crash when they run out
of memory. Typical memory leaks involve unreachable dy-
namically allocated memory as a consequence of having the
pointer that pointed to that piece of memory being destroyed.

Attackers can deliberately induce a memory leak to launch
a denial of service attack or take advantage of other un-
predictable program behavior due to a low memory condi-
tion [96].

2.7 Race Conditions

Race conditions are undesired situations that occur as a result
of incorrectly moderated accesses to a shared resource.

File-based race conditions such as the time-of-check-time-
of-use (TOCTOU) race condition are well known security
flaws. Issues crop up when a process checks some property
on a file (such as whether it exists or not), then later uses the
file with the assumption that the recently checked information
is still true. Even if the use comes immediately after the check,
there is often some considerable chance that a second process
can invalidate the check in a malicious way. This situation can
be exploited to launch aprivilege escalation attack.

For example, a privileged program might open a temporary
file “ tmp/foo ” after checking to see that it does not already
exist. After the check, but before the file is actually opened, a
malicious attacker could replace that file with a symbolic link
to the system password file “/etc/passwd ”. The attacker
then types his new password file and saves it [91]. Here the
attacker has managed to deceive the program into perform-
ing an operation that would otherwise be prohibited and has
thereby gained elevated privileges.

3 Safe Programming Languages

Safe programming languages are languages in which most of
the above vulnerabilities have been made hard or eliminated.
By coding in these safer languages it is unlikely that pro-
grams will suffer from common security vulnerabilities such
as buffer overflows, dangling pointers and format string at-
tacks. To benefit from these languages, programmers need
to either implement a program using them or port an existing
program into them.

3.1 CCured

CCured is a type-safe implementation of C that statically at-
tempts to verify that source code is free from memory errors,
and introduces run-time checks where static analysis does not
guarantee safety [62]. CCured seeks to transform C programs
into equivalent memory-safe versions, and its main aim is to
bring safety to legacy applications [12]. It can also function as
a debugging tool as it necessitates that a program be memory
safe. The CCured System is shown in Figure3.

It consists of several components: an OCaml translator, a
set of Perl scripts that are used to invoke the CCured applica-
tion, and a run-time library.

CCured uses a type system that broadens the existing C
type system, by differentiating pointer types according to the
way they are used in a program. It employs a type-inference
algorithm that analyzes the program and is able to deduce the
apt pointer type for all the pointers in the program. The intent
of this distinction is to prevent misuse of pointers, and thus
ensure that programs do not access memory areas they should
not. It uses three types of pointers that differ in their speed
and capabilities.

Pointers in C programs that have no casts or arithmetic
operations performed on them are marked asSAFEpointers.
Such pointers can be eitherNULLor valid references, and so
the only checking that needs to be done areNULL checks.
Pointers that are not involved in casts but have arithmetic op-
erations performed on them are marked asSEQpointers.SEQ
pointers carry additional information, such as array bounds
details, which are necessary for performing run-time checks.
When used, these pointers haveNULL and run-time bounds
checks performed on them. Wild (WILD) pointers are point-
ers whose type cannot be determined statically as they are in-
volved in type-casts, they requireNULL, bounds and run-time
type checking.

This mode of pointer treatment that requires few changes
(unlike other safe languages, such as Cyclone) to legacy C
code, to make it able to be compiled with CCured is a great
advantage of CCured.

CCured prevents dangling pointer dereferences, by using a
garbage collector for memory management. Memory is not
allowed to be explicitly deallocated (by makingfree() do
nothing), instead memory is reclaimed using the conservative
Boehm-Demers-Weiser [6] garbage collector. When an ob-
ject is freed under CCured, the storage is not immediately re-
claimed, but rather marked as inaccessible. Subsequent ac-
cesses check the mark and signal an error when the object
is dereferenced. Ultimately, the mark is reclaimed with the
garbage collector to avoid leaks. The garbage collector re-
sults in programmers having less control over memory man-
agement.

4



Statically verified and 

memory-safe version

violation: Abort
Memory-safety

Run normally

C source code
CCured Translator

instrumented C code

Compile and execute

Figure 3: The CCured System

For type-safety, CCured’s type system is extended“with a
physical subtyping mechanism for handling the upcasts and
with a special kind of pointer that carries run-time type infor-
mation for handling the downcasts” [15].

CCured achieves compatibility with code that has not been
compiled with it by representing arrays and pointers in a com-
patible format. CCured separates the additional information
(referred to asmetadata) that it maintains for its objects and
stores that information in a similar but separate data structure.
Each value in the original non-CCured program will be rep-
resented by two values in the transformed program – one for
data and one for metadata. Similarly, each operation in the
original non-CCured program is split into two – one opera-
tion on the data value and one on the metadata value. How-
ever, integrating some third-party libraries (especially those
containing pointers in the data structures) with the CCured
type system might be difficult.

The CCured authors carried out experiments to measure
the performance cost of run-time checks inserted by CCured
and report that,“for almost all the benchmarks, CCured’s
safety checks added between 3% and 87% to the running
times of these tests.”

Many of CCured’s design decisions are due to the fact that
it is most concerned with porting legacy code with minimal
changes.

CCured works on Linux and Microsoft Windows (Win95
operation is undependable but Win98, Win2k or WinXP
should work). It may also work on other systems that use
GCC, however the CCured authors have not attempted it. In
addition, since the translator is written in OCaml it would re-
quire OCaml to be installed in order to run.

3.2 Cyclone

Cyclone [21] is a type-safe dialect of C, that imposes some re-
strictions to preserve safety, and adds some features to regain
common programming idioms in a safe way.

Cyclone retains C’s syntax and semantics while prevent-
ing most common security vulnerabilities that are present in
C programs [46]. It prevents safety violations in programs in
a fashion similar to that of CCured, i.e. by using a combina-
tion of static analysis for memory management and run-time
checks for bounds violations.

In some cases the Cyclone compiler might decline from
compiling a program. This could be because the program has
been found to be unsafe or because a static analysis of the
instrumented source code was not adequate to provide safety
guarantees. In such cases, the programmer can modify the
program to include more informative annotations that either
aid in static analysis, or cause the program to maintain addi-
tional information needed for run-time checks.

Cyclone ensures type-safety while endeavoring to maintain
low-level control over aspects such as data representation and
memory management. Porting legacy C to Cyclone has been
found to require an alteration in about 8% of the code.

According to Grossman et al. [33], one of the most interest-
ing aspects of Cyclone is the implemented prevention mech-
anisms to handle dangling pointer dereferences and memory
leaks.

To prevent safety violations, such asNULL dereferences,
Cyclone introduces new kinds of pointers, such as the
“never-NULL ” pointer, denoted with a “@”. Cyclone as-
sures that these pointers will never contain aNULLvalue, and
thusNULL checks that create an overhead and lead to inef-
ficient programs can be avoided. If a function is called with
a pointer that could potentially have aNULL value, Cyclone
will protect against a possible error by introducing aNULL
check at the point of function invocation. Functions can be
declared to return @-pointers.

Buffer overflows are prevented with restrained pointer
arithmetic – pointer arithmetic is not allowed on *-pointers
or @-pointers. Alternatively, pointer arithmetic is only sup-
ported on new “fat” pointers, indicated by “?”. These pointers
are called “fat” as their representation consumes more space
than *-pointers or @-pointers. For example, instead of writ-
ing ‘‘int * p’’ in C, we write‘‘int ?p’’ in Cyclone
to define a fat pointer p. These pointers are modeled with an
address and bounds information, which helps Cyclone deter-
mine the size of the array being dealt with, and to appropri-
ately insert bounds checks to ensure safety. Cyclone automat-
ically converts arrays and strings to ?-pointers as needed. Pro-
grammers can also explicitly cast a ?-pointer to a *-pointer or
to a @-pointer. The former cast causes a bounds check to be
inserted and the latter causes aNULLand bounds check to be
inserted. *-pointers and @-pointers can be cast to ?-pointers
in the absence of any checks, converting them into ?-pointers

5



of size 1. The inserted bounds checks and increased space
usage cause fat pointers to be program overheads.

To prevent the use ofuninitialized pointers, Cyclone per-
forms a static analysis of the source code, and an error is
reported by the compiler if it detects that a pointer might
be uninitialized. At times the analysis might not be prudent
enough to deduce if something is correctly initialized or not.
This may result in having the programmer be forced to initial-
ize variables earlier than in C. Uninitialized non-pointers are
not treated as errors.

Dangling pointers dereferences are prevented using region-
based memory management. All memory in Cyclone is con-
sidered to be part of some region; which is defined to be a
segment of memory that is deallocated all at once. There are
three types of regions – heap, stack and dynamic regions. For
each pointer, Cyclone’s static region analysis keeps tabs on
which region it points into. It also maintains a list of regions
that arelive at any stage in the program. Dereferencing a
pointer in a region marked asnon-live is reported as an error.

Cyclone prevents format string [46] vulnerabilities via the
induction oftagged unions. Tagged unions are data structures
that can take on different types at different times (which is
indicated by an explicit tag value). The tags can be used by a
function to correctly determine the type of its argument.

Programmers however would need to explicitly add tags to
arguments when they call a function, which can become cum-
bersome. Cyclone provides a feature called“automatic tag in-
jection” which guarantees that at compile-time the compiler
will add appropriate tag for all arguments.

The performance of Cyclone is fairly good. In some rare
cases, Cyclone programs can demonstrate better performance
than C programs because of the efficient region-based mem-
ory management.

Cyclone version 1.0 is distributed as a compressed archive.
It currently runs only on 32-bit machines. It has been tested
on Linux, Windows 98/NT/2K/XP using the Cygwin environ-
ment, and on Mac OS X. Other platforms may or may not
work. To install and use Cyclone, the GNU utilities, includ-
ing GCC (variant of gcc version 3; version 4 will not work)
and GNU-Make are required.

3.3 Vault

Vault [90], like Cyclone, is a safe version of the C program-
ming language with a module system and a novel feature for
specifying and checking program resource (represented by
keys) use. Programmers are able to control data layout and
lifetime of program’s resources (such as memory) while be-
ing provided with safety guarantees.

An interface is maintained for each Vault module that spec-
ifies the names and types of functions and data that are ex-

ported. Therules for using these functions and data are also
maintained by the interface and are checked atcompile time.
Interface rules are recorded using two keywords:

• tracked – to identify resources manipulated by the inter-
face

• change specs – that show what each function does to
those resources.

Violations of these rules will cause the compiler to report
an error.

Vault useskeys to identify resources, and tracks the state of
these resources by associating astate with each program point
within a function. The state describes the set of keys held and
their individual properties at a particular program point.

Conditional access to objects is also supported by Vault.
Varying conditions might need to be satisfied at different pro-
gram points for the object to be accessed, these conditions are
described by using keys.

The normal type system is extended to include atype guard
for different types, which determines if access to an object is
permitted. For example, it is possible to specify the availabil-
ity of operations that can be performed on a variable (say,f1 )
of a specific type (say,file ) through the usage of a “guard”
variable (say,K):

K:file f1;

To access a guarded object, its key must be present in the
held-key set (a set of global keys, representing currently avail-
able resources). Function types also have conditions indicat-
ing which keys must be held prior to the function call and
which keys must be set on function return.

Vault’s region-based memory management system is im-
plemented by using these keys: when a region is created, a
key is associated with it and all objects in that region are type
guarded by that key. When the region is deleted afterwards,
the key is withdrawn from the held key-set and objects in the
region become inaccessible.

Potentially dangerous uninitialized variables are prevented
in Vault by having every variable initialized either to a explicit
programmer specified value or to a default value. Most basic
Vault datatypes are associated with a default value. It is illegal
for regular “*” pointers to containNULL values. Potentially
NULLpointers can be declared by suffixing the variable type
with a “?”.

Type-safety is provided by disallowing arbitrary type-
casts. Type-casts are only allowed between values of
the following datatypes:byte, char, short, int,
long, long long andstring [100].

Vault is a research prototype programming language and
not a Microsoft “product”. It has limited support and is not

6



encouraged to be used for critical development projects. The
Microsoft C compiler and linker are needed in order to com-
pile Vault programs.

3.4 OCaml

Objective Caml (OCaml) belongs to the Meta-Language (ML)
family of programming languages. It is the most popular and
extensively used version of Caml – a general-purpose pro-
gramming language, designed for program safety and depend-
ability [63].

OCaml’s set of tools includes an interactive top-level, a
bytecode compiler, and a native code compiler.

The ”top-level” is an interactive OCaml session that works
by reading in expressions, evaluating them and printing out
their result. It can be invoked by running theocaml program
and is useful for experimentation and quick development.
Bytecode compilers allow the creation of portable stand-alone
applications out of OCaml programs. The native code com-
piler ensures good performance and portability through na-
tive code generation for major architectures (including IA32,
AMD64, PowerPC, SPARC, MIPS, etc.).

Features such as a large standard library, object-oriented
programming constructs and modularity make OCaml suit-
able for large software engineering projects.

Functions in OCaml are first-class citizens, they are treated
just like data which allows them to be stored as values in data
structures, passed to other functions and returned as the results
of expressions (including the return-values of functions).

OCaml is a strongly typed language with astatic type sys-
temwhich means that the type of every variable and expres-
sion in a program is determined at compile-time [39]. This
helps to eliminate a significant category of run-time errors that
result from type mismatches and also avoids the need for in-
serting performance hindering run-time checks.

OCaml’s type-inferring compiler minimizes the need for
manual type annotation. The types of functions and variables
need not be explicitly declared as they are in C or Java. The
compiler is able to infer most of the necessary type infor-
mation automatically. Type inference eliminates a family of
errors which could result inNullPointerExceptions ,
ClassCastExceptions and segmentation faults [64].
OCaml however does not perform any implicit type casting.
In expressions with mixed datatypes explicit casts are neces-
sary for the expression to be evaluated. OCaml needs this
explicit casting to be able to do type-inference correctly and
to avoid hard to detect bugs caused by implicit casts.

OCaml has no support for operator overloading, e.g. in-
teger addition is performed using “+” whereas floating-point
addition is performed using “+. ”. This again is mainly to do
type-inference unambiguously. Type inference relies on the

concept that each operator has a unique type to determine the
types of its operands. If the same operator, say “+”, is over-
loaded on integers and on floats, there could be two possible
types for the result. It would either be an integer (resulting
from integer addition) or a float (resulting from floating-point
addition). If the compiler decides on one of these, say integer,
later uses of the result as a float would result in an error.

OCaml supportspolymorphic functions that enhance code
re-usability by making it possible to write generic programs
that work for values of any type. It is trivial to define data
structures that can take on any type of element. A generic
function could be written that could be applied to lists of inte-
gers or lists of records.

It is astrictly1 evaluated language which means that the ar-
guments to a function are always evaluated completely before
the function is applied.

It also has an incremental2 garbage collectorso that mem-
ory need not be explicitly allocated and freed. There are
no new(), malloc(), delete() , or free() func-
tions. The garbage collector works with two heaps – a minor
heap and a major heap. The minor heap, which is garbaged-
collected often, holds small objects and objects that are allo-
cated and deallocated frequently. The major heap, which is
garbaged-collected infrequently, holds large objects and ob-
jects with a long lifetime that are promoted to it after some
time from the minor heap.

OCaml programs can be debugged in a variety of ways:

• the interactive system can be used to test (small) func-
tions efficiently: various inputs are fed into the interac-
tive system and results are checked for correctness.

• the function call tracing mechanism of the interactive
system can be used to follow the computation for more
complex cases.

• the symbolic replay debugger is a debugging tool that
allows the program to be paused at any time so that the
value of variables and stack layout can be checked.

A foreign function interface (FFI) allows OCaml code to
call routines or make use of functions provided by C code.
The C code can be statically or dynamically linked with Caml
code. It is also possible for C functions to call OCaml func-
tions. Theocamlmklib command allows building libraries
containing both Caml code and C code.

OCaml version 3.09.2 is available for download. It works
on Linux, MacOS X and Microsoft Windows.

1. Strict evaluation is sometimes called “eager” evaluation.

2. Runs in parallel with the application, to avoid detectable delays.

7



3.5 Haskell

Haskell [34] is a purely-functional general purpose program-
ming language. It is well suited for a diverse set of applica-
tions. It allows designing of initial prototypes of programs by
writing specifications which can be tested and debugged by
actually executing them.

Like most functional languages, Haskell programs are
maintainable, as the code is more concise and understandable
as compared to that of imperative languages like Java and C.

It is a strongly typed language, eliminating a vast class of
compile-time errors. Its polymorphic type system helps en-
hance code re-usability.

Haskell is a non-strict language withlazy evaluation. Lazy
evaluation is a technique where only expressions whose re-
sults are needed are computed; other possibly unnecessary
computations might be delayed or never carried out at all.
In particular Haskell usescall-by-need : an evaluation strat-
egy, where, if the function argument is evaluated, the results
are stored for subsequent uses rather than recomputing them.
This has a positive effect on performance.

Haskell has powerfulabstraction mechanisms, such as the
ability to use functions as values, i.e. higher-order functions.
Functions in Haskell are first-class citizens. Prudent use of
higher-order functions can help build modular programs.

Haskell also featuresinbuilt memory management, which
alleviates the programmer from manual memory management
issues. Memory is allocated and initialized automatically, and
consequently recovered by the garbage collection system. Au-
tomatic garbage collection helps prevents run-time errors like
dangling pointer dereferences.

The Haskell 98 Foreign Function Interface (FFI) [35] adds
support for invoking code written in other programming lan-
guages from Haskell and vice versa.

There are a lot of tools for interfacing Haskell with other
languages, such as:

• Green Card [32] – a FFI preprocessor for Haskell, simpli-
fying the task of interfacing Haskell programs to external
libraries (which are normally exposed via C interfaces).

• HaskellDirect [37] – an Interface Definition Language
(IDL) compiler for Haskell, which helps interfacing
Haskell code to libraries or components written in other
languages (C).

• C→Haskell [11] – A lightweight tool for implementing
access to C libraries from Haskell.

• HSFFIG [36] – Haskell FFI Binding Modules Generator,
a tool that takes a C library include file (.h) and gener-
ates Haskell FFI import declarations for items (functions,
structures, etc.) that the header defines.

The drawbacks of using Haskell include the fact that
Haskell programs tend to allocate quite a bit of extra memory
in the background. In applications where performance and
low-level control are desired, an imperative language like C
would be a better alternative. Also, functional programming
requires an alteration in programmer perspective, which could
be difficult.

There are several Haskell implementations, and are dis-
tributed under open source licenses. There are currently no
commercial Haskell implementations. Haskell compilers and
interpreters are freely available for just about any computer.

3.6 Java

The Java programming languageplatform provides a
portable, architecture neutral, object-oriented programming
language and supporting run-time environment [44]. Java
technology enables the development of secure, high perfor-
mance, robust applications on multiple platforms.

Since Java technology was intended to operate indistrib-
uted environments, security features have been designed and
built into the language and run-time system. Java applica-
tions are resistant to malicious code injections3. The lan-
guage helps programmers write safe code by featuring type-
safety, automatic memory management, garbage collection,
and bounds checking on strings and arrays [45]. There are no
explicit programmer-defined pointer datatypes and no pointer
arithmetic.

The Java security model is based on a customizablesand-
box which is a restricted environment in which Java programs
can run untrusted remote code, without potential risk to sys-
tems or users [82].

For portability, the compiler generatesbytecodes – an ar-
chitecture neutral intermediate format. The same bytecodes
will run on any platform and there are no datatype incompati-
bilities across architectures.

Java provides extensive compile-time checking, followed
by a second level of run-time checking. Java is strict in its
definition of the basic language, it specifies the sizes of its
basic datatypes and the behavior of its arithmetic operators.

TheJava Virtual Machine (JVM) is the specification of an
abstract machine for which Java compilers can generate code.
Implementations of the JVM for different platforms provides
the concrete realization of the virtual machine.

The Java garbage collector runs as a low-priority back-
ground thread, ensuring a high probability that memory is
available when needed. Calculation-intensive sections of
large programs can be written in native machine code to help

3. It has however been demonstrated that a single-bit error induced in a
Java program’s data space can be exploited to execute arbitrary code [31].

8



improve performance. Although, the portability and security
features of Java are lost via this.

Bytecode verification ensures that code conforms to the
JVM specification and guarantees that only valid bytecodes
are executed, preventing hostile code from corrupting the run-
time environment. Run-time safety is guaranteed by the byte-
code verifier in conjunction with the JVM.

Secure Class Loading provides security by associating
classes loaded by a particular class loader with a unique
namespace. Anamespace is a set of unique names of the
classes loaded by a particular class loader. The namespace of
classes loaded by a particular class loader is isolated from the
namespaces of other class loaders. As trusted local classes and
untrusted classes downloaded from remote sites are loaded
through separate class loaders, the possibility that an untrusted
class can substitute a trusted class and thereby launch an at-
tack is reduced.

The JVM arbitrates access to critical system resources and
uses aSecurityManager class to minimize the actions of un-
trusted pieces of code.

Java also has comprehensiveAPIs and built-in implemen-
tations of important security standards, which help in build-
ing secure applications. There is support for a wide range of
cryptographic services, development and deployment of pub-
lic key infrastructure, secure communication, authentication,
and access control [82].

Java programs may however have lower performance than
their counterparts in languages such as C/C++. This is be-
cause bytecode is not as optimized as the machine code gen-
erated by C/C++; and the use of a automatic garbage collector
that has to decide when to delete objects can be more expen-
sive than imperative deletion in C/C++.

The Java Software Development Kit (JDK) is required for
building applications, applets, and components using the Java
programming language. It includes the Java Runtime Envi-
ronment (JRE) which consists of a Java virtual machine, class
libraries, and other files that support the execution of pro-
grams written in the Java programming language.

3.7 .NET Framework Architecture

The .NET Framework [59] is a software development plat-
form, similar to Java, created by Microsoft. .NET technol-
ogy allows development in multiple programming languages
along with an extensive standard library.

The .NET Framework uses an intermediate language
known as the Common Intermediate Language (CIL) to be
platform independent. Programming languages on the .NET
Framework first compile into CIL and are thereafter compiled
into native code using just-in-time (JIT) compilation. The
amalgamation of these concepts is a specification called the

Common Language Infrastructure (CLI), which has compo-
nents for: exception handling, garbage collection and security.
Common Language Runtime (CLR) is Microsoft’s implemen-
tation of the CLI.

.NET’s security mechanism has two features: code access
security, and validation and verification. Code access security
uses the source4 of the assembly5 to determine the permis-
sions to be granted to it.

The CLR performs the validation and verification tests on
the loaded assembly. Validation ensures that the assembly
contains valid metadata and CIL. The verification mechanism
checks to see if the code attempts to do anything that is “un-
safe”. Unsafe code will generally only be executed if the as-
sembly is installed on the local machine.

The .NET framework is primarily supported only by the
Microsoft family of products, including the Windows Server
System, the Windows XP operating system, and the Microsoft
Office System. However, there are several open source devel-
opment projects, such as Mono [61] (a project led by Novell,
Inc.) that provide software for supporting .NET on different
operating system platforms including Linux, Solaris, Mac OS
X, and BSD (OpenBSD, FreeBSD, NetBSD).

The .NET Framework SDK is free and includes compil-
ers and various other utilities to aid development. Several
languages have compilers for the .NET Framework, but only
a limited set is predominantly used and supported. Prime
among these are C#, Visual Basic .NET, C++/CLI, J#, JScript
.NET. The Visual Studio .NET [60] integrated development
environment is the major tool used for development. The Ex-
press Edition is available as a free download, but the Standard,
Professional and Team editions are available for a fee.

3.8 Scheme

Scheme [78] is a statically scoped dialect of the Lisp pro-
gramming language. It is a small but powerful and produc-
tive language, designed to have clear and simple semantics. It
supports a wide variety of programming paradigms, including
imperative, functional, and object-oriented.

Like most higher level languages, Scheme is memory-safe,
in the sense that one cannot leak memory, nor write off the end
of a buffer.

Most Scheme systems are interactive, allowing program-
mers to incrementally develop and test parts of their program.
It can also be compiled, to make programs run fast. Scheme is

4. Source refers to whether it is installed on a local machine or downloaded
from a remote site.

5. An assembly is the building block of a .NET Framework application;
they are complied and form an atomic functional unit that can be deployed.
Assemblies exist as executable program files (.exe) or dynamic link library
(.dll) files.

9



not usually quite as fast as C, and results can vary depending
on the compiler used.

However there are several significant limitations that make
it unsuitable for writing large-scale security-critical code.
Scheme is a strong, dynamically typed language. Every value
has a type which can be ascertained; however it does not pro-
vide static checking of the types, instead all type checking is
done dynamically, at run-time, which means that there are no
assurances that the program will not apply an operation at run-
time to arguments for which it makes no sense. This lack of
an expressive type system makes it harder to safely compile
Scheme to an efficient native form.

There are no standard exception handling semantics; the
standard stipulates that certain actions result in an error, but
there is no standard facility for handling such errors when they
occur.

Scheme programs can make use of new derived expression
types, called macros. Scheme provides ahygienic macro sys-
tem which is safer and often easier to work with than the fully
programmatic Lisp-style macros, though not as powerful. Hy-
gienic macros [50] are macros whose expansion is guaranteed
to not cause name clashes with definitions already existing
in the surrounding environment. However, if macros are not
used judiciously the syntax of the program can change in un-
desired ways making it difficult to understand and semanti-
cally analyze what the program does.

Since the Scheme standard is very conservative and spec-
ifies only the core language, many different implementations
have been developed. The Scheme community is still con-
siderably fragmented and so there is a very limited standard
library. Most libraries work only in specific implementations.
The Scheme Request For Implementation (SRFI) [79] project
aims at resolving this.

Most Schemes have FFI support to the native language
(i.e. the language used to implement the Scheme inter-
preter/compiler) allowing native code to be called from
Scheme and vice versa [80].

There are several implementations of Scheme, both free
and commercial, that run on various hardware platforms and
operating systems.

4 Overcoming Security Flaws in C

Despite all the security vulnerabilities known to be present in
the C programming language, it is still widely used for soft-
ware development and has proved to be efficient and indis-
pensable to programmers. Developers continue to use C be-
cause of the trade-offs between safety and functionality. Po-
tentially unsafe code is preferred over code that is inefficient,
more memory-greedy and has control to a lesser extent over

low-level data structures and memory management.
Features of the C language such as pointer arithmetic, type-

casting of pointers and other memory operations that can di-
rectly access raw memory make it suitable for writing low-
level system programs which need high performance [66].

Other factors in favor of C include - programmer experi-
ence, familiarity, portability and extensibility (it is easier to
use existing C libraries).

However, as application requirements have become in-
creasingly sophisticated, C programs have had to contend
with frequent convoluted pointer computations, which leads
to efficient but insecure programs, and it is common belief
that safety violations are likely to remain prevalent in C pro-
grams.

The infamous buffer overflows, described as the “Vulnera-
bility of the Decade” [20], are so widespread in C because it is
inherently unsafe. There is no automatic bounds-checking for
array and pointer references, and so, the onus is on the pro-
grammers to perform these checks. Also, many of the stan-
dard C library functions (such as,s trcpy(), sprintf(), gets())
are themselves unsafe and hence the programmer is responsi-
ble for bounds-checking these too. The process of inserting
checks that cover all possible paths is tedious and error-prone,
and hence programmers often omit many of these checks.
There could also be situations where programmers include
checks for all their code but use a dynamically linked library
which is linked in with the executable at runtime and so are
provided with no assurances about the safety of the C code
within the library.

In this section we present a survey of the diverse counter-
measures that either seek to eliminate particular vulnerabili-
ties or prevent them from being exploited while maintaining
the functionality of the system.

The countermeasures are divided into several categories
based on how they tackle the problems.

4.1 Static Analysis of Source Code

Static source code analyzers are automated tools that attempt
to find software vulnerabilities by examining program source
code without having to execute the program.

They are primarily designed to be used at development
time to diagnose common coding errors that contribute in
making code unsafe. They can be used as a first step in manu-
ally auditing source code. Using these tools is relatively easy;
they take as input one or more source code files, and after in-
specting them, produce an output which identifies potentially
vulnerable areas of code.

Detecting certain vulnerabilities, such as buffer overflows,
by statically analyzing source code is, in general, an unde-
cidable problem. The Halting Problem can be reduced to the

10



buffer overflow detection problem [52]. Thus, analyzers will
generate a lot of false positives (report bugs that the program
does not contain) and/or false negatives (does not report bugs
that the program does contain). However, they are still capa-
ble of producing useful results. The major advantage of static
analyzers is that security flaws can be eliminated before the
code is deployed.

As proposed by Younan et al. [100], static analyzers can
be fractioned into two classes based on whether they need the
source code to be semantically commented (annotated ) or not.

4.1.1 Analysis of semantically commented code

This class of static analyzers exploit semantic comments
in source code and libraries to determine assumptions and
intents being made in the code. Semantic comments follow a
definitive syntax and provide extra information that is useful
in determining programmer intentions. For example, pro-
grammers would annotate a pointer with/ * @notnull@ * /
to indicate that the pointer’s value cannot beNULL at that
program point. The convenience of this approach is that it
allows efficient scanning of the source code for assumption
violations.

Splint
Secure Programming Lint [86] (successor to LCLint) is a

tool for statically analyzing C source code for security vul-
nerabilities and coding flaws. It can efficiently detect a broad
range of implementation errors by exploiting annotations that
describe assumptions made about a type, variable or function
interface.

Splint’s checks include type mismatches, unreachable
code, buffer overflows,NULL and dangling pointer derefer-
ences etc. Better checking results can be obtained by putting
more effort into annotating programs [87].

Known vulnerable functions in the standard library are an-
notated with conditions that must be met before and after the
function is called.

For example,strcpy() is annotated as follows:
/ * @requires maxSet(s1) >= maxRead(s2) @ * /

/ * @ensures maxRead(s1) == maxRead(s2) @ * /

The requires clause signals that the buffers1 must be
large enough to hold strings2 . Theensures clause signals
that maxRead of s1 after the call is equal tomaxRead of
s2 .

Splint allows suppression of error messages in code regions
commented with/ * @ignore@* / and/ * @end@* / .

Format string vulnerabilities are detected using
taintedness attributes. These attributes record whether
or not achar * came from a possibly untrustworthy source
and are useful in preventing several security vulnerabilities.

All user input is considered tainted and a run-time error
reported before a tainted value is used in an unsafe way [26].

Splint is used on source code in an iterative manner. Af-
ter the first run, the code or annotations are suitably modi-
fied based on the warnings produced. In subsequent runs,
the modifications are checked and newly documented assump-
tions disseminated. This process is continued until Splint is-
sues no warnings.

Splint is compiler independent and is available as source
code and binary executables for several platforms (including
Linux x86, FreeBSD, OS/2, Solaris, Win32) and can be freely
distributed and modified under the GNU General Public
License.

4.1.2 Analysis of code lacking semantic comments

These analyzers attempt to verify if code is safe by con-
structing an execution model at every program point or by
condensing the program to a constraint system. By tracing
the different execution flows and actions, they are able to
demonstrate if particular conjectures always withstand.

ITS4
It’s the Software Stupid! Security Scanner [42] is a

command-line tool for statically scanning C and C++ source
code for possible security susceptibilities. ITS4 scrutinizes
source code for function calls that are likely to be perilous,
such asstrcpy . It doeslexical analysis on the source code
by breaking it up into a stream of tokens and then examining
the resultant token stream against a vulnerability database that
contains a list of unsafe and misused functions [91].

At startup, the vulnerability database is read from a text file
– the contents of which are stored in memory while the tool
is in use. Vulnerabilities can be added, deleted and modified
from the database.

ITS4 also guards againstTOCTOUfile-based race condi-
tions.

For each case, ITS4 generates a report that includes a brief
description of the problem and suggestions on how to over-
come it. Possibly vulnerable functions that are identified are
further analyzed to determine the severity level they should be
reported with.

For example,strcpy(buf, "\n") will be reported
with the lowest severity as the second argument is a fixed
string which does not pose much of a threat. ITS4 works ad-
equately fast to provide real-time feedback to programmers
while coding.

ITS4 can be customized for specific applications using its
configurable command-line options which are useful for fo-
cusing on specific functions while suppressing others.

11



It is freely available for non-commercial use on Unix and
Windows platforms.

RATS
Rough Auditing Tool for Security [73] is an open source

tool that supports five popular programming languages: C,
C++, Perl, PHP and Python. It scans source code looking for
known insecure function calls and can detect errors such as
buffer overflows and race conditions in file accesses, such as
theTOCTOUproblem.

As can be inferred from the name, RATS performs only a
rough analysis of source code. It does not find all errors and
may also report false positives.

RATS scans each file specified on the command line, and
produces a report (text, HTML or XML) when scanning is
complete. Vulnerabilities reported depend on the data con-
tained in the vulnerability database(s) used, and the warning
level in effect. Filenames and line numbers of vulnerabil-
ity occurrence are reported along with a short description of
the vulnerability, severity and recommended actions. Simple
analysis to eliminate reporting conditions that are evidently
not problems are also performed.

RATS is free software and is released under the GNU
Public License (GPL). It was developed for Unix and has
been ported to Windows as well.

BOON
Buffer Overrun detectiON [7] is a static analyzer for de-

tecting buffer overflows in C code. It treats strings as abstract
datatypes (so as to recognize natural abstraction boundaries
that are obscured by the C string library) and models strings
buffers using a pair of integers: the number of bytes allocated
for the string (itsallocated size), and the number of bytes cur-
rently in use (itslength ) [94]. The buffer overflow problem is
in effect reduced to an integer range analysis problem.

The integer ranges are used to define aconstraint language,
and all string operations are modeled based on what they do to
theallocated size (alloc(s) ) andlength (len(s) ) of the
string. The program is then parsed, and for every statement
a set of integer range constraints is developed. The safety
property to be checked is:

for all strings s, len(s) ≤ alloc(s)

Next, the constraint system is solved and matched to detect
inconsistencies, which are reported as possible overflows. The
programmer then needs to manually check the source code
and see whether they are real overflows or not.

The tool generates a considerable number of false positives
due to a trade off of precision for scalability. There are also
some restrictions when analyzing pointer operations and no
support for format string vulnerability detection.

BOON is available under the BSD license for Unix

platforms. The current release of BOON is provided on an
“as is” basis and is only a research prototype that is known to
have limitations and probable bugs. It is unsupported and its
use may require skillfulness and diligence.

Prevent
Coverity’s Prevent [70] is a sophisticated static analysis

tool, that helps make new and legacy source code more stable
and secure. It employs a dataflow analysis engine to detect
flaws in C and C++ code. It spawned from Stanford Univer-
sity’s xgcc/Metal research [58].

Prevent automates the process of scanning, reporting and
tracking for security vulnerabilities, and covers various cate-
gories of software defects, such as [97]:

• Run-time crash causing defects: includingNULLpointer
references, use after free and double frees.

• Poor performance: including memory leaks, file handle
leaks, database connection leaks and misuse of API’s.

• Incorrect program behavior: including uninitialized vari-
ables and invalid use of negative values.

• Security vulnerabilities: including buffer overflows, in-
teger overflows and format string vulnerabilities.

The analysis engine models at compile-time, the outcomes
that the operations in the source code could have at run-time.
Simulation is done for each program path using a finite state
machine. The analysis engine has a core set of software
checks incorporated into it, but can also be customized for
specific security requirements.

The analysis is carried out by searching individual lines
of code in isolation for syntactic anomalies, as well as across
complex code processes and functions. This helps in present-
ing a complete view of each event that led to a vulnerability.
It has a low false positive rate of about 20%.

It provides summarized details of potential risks, via email
or web graphical user interface, including defect volume, lo-
cation, dispersion and severity. It also has a “Defect Manager”
with “CodeBrowser” that can be used to navigate the code to
view and fix the bugs.

Prevent automatically integrates into a variety of build en-
vironments and requires no changes to the code or the build
processes. It supports several platforms (including Linux,
HPUX, FreeBSD, NetBSD, Windows, Mac OS X, Solaris
Sparc, Solaris x86 ) and several compilers (including GCC,
G++, Sun CC, MS Visual Studio, Intel Compiler for C/C++).
It currently works with various open source projects, includ-
ing FreeBSD, MySQL and Mozilla.

Prevent is an enterprise tool, and its price is based on the
total code size to be analyzed. However, it offers a free code

12



audit to certify and prove its capabilities.

Fortify Source Code Analysis Suite
The Fortify Source Code Analysis Suite [30] is an inte-

grated set of static source code analysis tools, similar in many
ways to Coverity’s Prevent. It works seamlessly with exist-
ing development and audit tools and processes and allows for
effective scanning, tracking and fixing of software security
flaws.

It does an effective and precise data flow analysis of source
code, and provides an interactive graphical view of the discov-
ered security issues. It can efficiently processes voluminous
and complex code bases.

Software developers can use Fortify’s plug-and-play capa-
bilities with popular Integrated Development Environments
(IDEs) including Microsoft Visual Studio, Borland JBuilder
and Eclipse to dispense security vulnerabilities early in the
development lifecycle.

The tools work much like a compiler. Minor modifications
to the build script invokes Fortify’s language parser which
reads in a source code file(s) and transforms them to an in-
termediate format, optimized for security analysis. This inter-
mediate format is exploited by the Analysis Engine to locate
security flaws.

The Analysis Engine, comprises of four distinctive analyz-
ers:

• Data Flow Analyzer – discovers possibly unsafe data
paths.

• Semantic Analyzer – detects use of insecure functions or
procedures and infers their context of use.

• Control Flow Analyzer – tracks ordering of operations to
detect unsuitable coding constructs.

• Configuration Analyzer – tracks vulnerable interactions
between configuration and code.

It also provides a “Rules Builder” so users can extend and
customize the capability analysis rules.

It supports multiple operating systems (including Linux,
Windows, Mac OS X and Solaris) and several program-
ming languages (including C, C++, C#, Java, JSP, PL/SQL,
ASP.NET, VB.NET and XML).

The Analysis Suite can be purchased as an Enterprise
Edition or a perpetual license, and the prices are per CPU on
the build server. It also offers a free code audit to certify and
prove its capabilities.

Prexis: Automated Software Security Assurance
Ounce Labs’ Prexis suite [67] is a set of automated soft-

ware tools for static source code security analysis.

Prexis/Engine is the source code analysis and security vul-
nerability knowledge-base core. It uses advanced complier
technology and a customizable software security knowledge-
base. It provides a complete characterization of software
risks, coding faults, design defects and policy violations.

The specialized compiler technology is used to parse the
source code to derive a Common Intermediate Security Lan-
guage (CISL). The intermediated code is analyzed by Ounce
Labs’ Contextual Analysis technology to detect, confirm, and
categorize the vulnerabilities. The results are then stored in a
database for analysis and reporting.

The Contextual Analysis technology allows source code
to be automatically analyzed in detailed depth. The con-
text in which a call is used influences whether or not it is
unsafe. Vulnerabilities are determined by tracking the flow
of data through an application and understanding the inter-
relationships between the different program elements.

The security knowledge-base, with over 60,000 entries, al-
lows Prexis/Engine to identify a wide range of vulnerabilities
including buffer overflows, insecure access control, privilege
escalations, race conditions, SQL Injection etc. The security
knowledge-base is customizable to specific security and pol-
icy criteria.

Prexis uses a metric called V-Density (vulnerability den-
sity), a numeric expression computed by associating the num-
ber and criticality of vulnerabilities to the size of the appli-
cation being analyzed. Once the V-Density has been deter-
mined, thresholds can be set for understanding the security
state of critical software.

Prexis supports multiple operating systems (including
Linux, Windows and Solaris) and several programming lan-
guages (including C, C++, Java and .NET languages).

It is proprietary software and can be purchased for a fee.

4.2 Dynamic Analysis Tools

Dynamic analyzers instrument source programs and create a
version that when run, has the same behavior as the original
program but generate specific events when a possible vulner-
ability is encountered. As the checking is done dynamically,
more accurate checking than can be done statically is possi-
ble. This is because of the precision of the information that
they provide as compared to static analysis tools. Static analy-
sis tools usually report errors that are only approximations of
the properties that actually hold when the program runs [43].
Hence, the high false positives and/or false negatives that are
generated by static analyzers can be eliminated by using dy-
namic analyzers. However, some errors might be omitted as
some execution paths might never have been followed while
analyzing.

These tools are primarily designed to be debugging tools

13



for finding memory leaks and buffer overflows. Using these
tools is simple, programs to be tested are linked against them
and they generate a report detailing errors and other signif-
icant events. These tools generally have a high performance
overhead and so are mainly used for debugging purposes.

Purify
Purify is a tool designed to detect memory bugs, such as

leaks and access errors, which are a source of many security
vulnerabilities. It performs verification dynamically; i.e. it
detects errors at program run-time.

Purify parses and adds verification instructions into com-
piled object code, including third-party and operating system
libraries. This helps the program to output the precise posi-
tion of the error, the memory address affected, and other re-
lated data when a memory error occurs. The instrumented
program’s object code will have function calls that check
every memory read and write for various types of access er-
rors, including uninitialized memory reads and freed memory
reads/writes.“Purify tracks memory usage and identifies in-
dividual memory leaks using a novel adaptation of garbage
collection techniques” [38].

The inserted function call instructions maintain a memory
state table, in which two bits are used to associate one of three
states with each byte of memory in the heap, stack, data and
BSS sections. The three states are:

• unallocated (unwritable and unreadable),

• allocated and uninitialized (writable but unreadable)

• allocated and initialized (writable and readable).

A read/write to unallocated bytes causes a warning mes-
sage to be printed. Writing to memory marked as allocated-
and-uninitialized causes it to change state and become
allocated-and-initialized. Heap overflows are detected by al-
locating“red-zones” at the start and end of memory blocks
returned bymalloc() . Red-zone bytes are marked as unal-
located, and so an access to these bytes will signal an error.

Purify works automatically, i.e programs linked with Pu-
rify will be implicitly verified for memory errors. This is in
contrast to traditional memory debuggers that essentially need
to be done by hand, by stepping through the code line by line.

It is beneficial to use Purify on programs written in pro-
gramming languages that have manual memory management
(such as C) as there is a higher probability of having mem-
ory leaks here, as compared to programs that have automatic
memory management (such as Java) where memory leaks are
implicitly avoided. As it is targeted mainly for debugging pur-
poses, its relatively high overheads are not an issue.

Purify is available for Unix (Solaris, SPARC, Ultra
SPARC), Windows (2000, XP Professional, NT 4.0) and

Linux (Red Hat, Enterprise) environments, but is proprietary
software and can be expensive to license [40].

Valgrind
Valgrind [89] is a set of tools for automatic memory debug-

ging and profiling of large programs. Detection of memory
bugs help make programs more stable and profiling helps in
efficient memory use of programs.

Valgrind is essentially a virtual machine using just-in-time
(JIT) (i.e. dynamic binary translation) compilation. This
means that applications do not need to be modified or recom-
piled to use Valgrind, it can even be used on programs for
which only binaries are available and there is no source code.
Valgrind initially translates the program into an intermediate,
more elementary form calleducode, which is instrumented by
one of the tools. The ucode is then translated back into x86
code that is run on the target machine.

A significant amount of performance is lost in these trans-
formations and by the code that the tools insert. Programs
run considerably slower under Valgrind, the slowdown factor
can range from 5–100 depending on the tool used. Since it is
intended mainly as a debugging tool, this slowdown is accept-
able.

Valgrind works with programs written in any language,
though mainly aimed for programs written in C and C++, it
has been used on programs written in Java, Perl, Python, as-
sembly code, Fortran, Ada, and many others as well. Using
Valgrind is straightforward, the program to be run under Val-
grind is prefixed withvalgrind --tool=tool nameon
the usual command-line invocation.

The Valgrind distribution includes five useful debugging
and profiling tools: Memcheck, Addrcheck, Cachegrind,
Massif, and Helgrind. Valgrind isextensible, which means
that new tools that add arbitrary instrumentation to programs
can be written and plugged in.

Valgrind is free open source software, available under the
GNU General Public License. It is not distributed as binaries
or RPMs, instead the source code has to be downloaded and
compiled in order to be installed on the system. It is actively
maintained and supported on x86/Linux, AMD64/Linux and
PPC32/Linux platforms.

4.3 Sandbox Security

Sandboxing seeks to restrict the corruption that the exploita-
tion of a vulnerability might result in. It does not thwart
the vulnerability or its violation, but instead tries to limit the
amount of damage that a compromised component can cause
to a system.

Sandboxing employs the “Principle of Least Privi-
lege” [81], according to which, an application is granted the

14



least possible privileges to be able to complete its job, and
the privileges are granted only for the least amount of time
necessary. It is usually implemented in two ways:

• Seclusion of faults: guarantees that when a program
component fails, it will not result in total system fail-
ure. Address spaces of different modules are usually kept
separate to enforce fault isolation, however for tightly-
coupled modules this incurs substantial execution over-
head, due to costly context switches and inter-module
communication.

• Imposition of a policy: a policy is defined and enforced,
stating categorically what an application is allowed and
prohibited from doing. The enforcement is usually done
via a reference monitor where an application’s access to
specific resources is regulated.

The main drawback of this type of countermeasure is that
it requires a well-reasoned, comprehensive policy regarding
what can and cannot be accessed. Creation of such a policy
usually requires a detailed understanding of the program
being sandboxed. A further problem with policy-based sand-
boxing technologies is that they are not broadly portable [92].

Systrace
systrace [88] is a utility that audits and regulates an

application’s access to a system by generating and enforcing
access policies for system calls. It obviates the requirement
to run a program in a completely privileged mode. Using
systrace , programs can be run unprivileged but are pro-
vided with facilities forprivilege elevation when required. A
configurable policy determines which operations can be exe-
cuted with elevated privileges [71].

systrace is especially useful when running untrusted
binary-only applications, the access of these applications to
the system can be sandboxed, increasing the system’s total se-
curity.

The policy specifies the behavior desired of applications
on asystem call level basis. Withsystrace , a user can de-
cide which programs can make which system calls and how
those calls can be made. Policy generation is possible either
automatically – a base policy is generated, containing all the
system calls the application wishes to make, this list can later
be refined; orinteractively – the user decides whether an at-
tempt to execute a system call that is not described by the
current policy can be performed during program execution.
Operations that are not explicitly permitted by the policy are
denied bysystrace . Such operation denials are logged and
the user can decide whether he wants to add it to the presently
configured policy or not.

Like most existing utilities and toolssystrace does not
guarantee complete security, but the additional layer of secu-

rity that it introduces makes it more difficult for an attacker to
gain unwarranted access.

systrace is distributed under a BSD-style license and
ships by default with NetBSD, OpenBSD and OpenDarwin.
There are also ports for Mac OS X (currently unmaintained),
FreeBSD, and Linux.

SFI
The Software-based Fault Isolation [95] approach imple-

ments fault isolation using a single address space. This
negates the need for context switches and allows for cheaper
inter-module communication, but increases execution time.
Only distrusted modules warrant an execution time overhead.
Code in trusted domains execute unvaried.

The approach has two parts. First, a distrusted module’s
code and data is loaded into its ownfault domain – a logically
differentiated section of the application’s address space, com-
prising a contiguous region of memory. Each fault domain
has a unique identifier which is used to mandate its access to
process resources.

A fault domain is split up into two segments, one for
the code of the distrusted module and the other for its static
data, heap and stack. All virtual addresses within a segment
share a distinct pattern of upper bits, called thesegment
identifier . Second, the distrusted module’s object code
is instrumented to prevent it from writing or jumping to an
address outside its fault domain. Such isolated modules are
not capable of modifying“each other’s data or executing each
other’s code except through an explicit cross-fault-domain
RPC interface” [95].

This isolation is enforced using two techniques:

1. Segment matching inserts checking code before every
unsafe instruction i.e. an instruction that jumps or writes
to an address that cannot be statically verified to be in the
right segment. The checking code decides if the target
address of the unsafe instruction has the correct segment
identifier. If the check is unsuccessful, an error will be
reported. This technique allows the programmer to ex-
actly locate the violating instruction.

2. Address sandboxing attempts to reduce the overhead as-
sociated with enforcing SFI, by providing no information
on the source of faults. Every unsafe instruction is pre-
ceded with inserted code, that sets the upper bits of the
target address to the correct segment identifier. Writable
memory is allowed to be shared across fault domains,
using a technique calledlazy pointer swizzling: for each
address space segment that requires access, the page ta-
bles are modified so as to map the shared memory at the
same offset.

15



These techniques make it more difficult for malicious
users to exploit memory address vulnerabilities.

Program shepherding
Program shepherding [47] is a technique that inspects all

execution-flow transfers throughout program execution to as-
sure that each respects a given security policy. The focus is on
preventing transfer of control to malicious code, thereby pre-
venting a wide range of security attacks. For example, buffer
overflow attacks are prevented, as a successful attack would
need a control-flow transfer that would violate the security
policy.

Program shepherding can also be used to disallow exe-
cution of shared library code except through declared entry
points, and can ascertain that a return instruction only returns
to the instruction after the point of the call.

Program shepherding is implemented via three techniques:

• Execution privileges restricted based on code origins:
this can ensure that malicious code disguised as data is
never executed. Code origins are checked against a secu-
rity policy to see if it should be granted or denied execute
privileges. Code origins are sorted based on whether it is
from the original image on disk and unmodified, dynam-
ically generated but unmodified since generation or code
that has been modified .

• Limited transfer control : this denies attackers the possi-
bility of branching directly to their code and executing it,
shunting any sanity checks that might have been required
to be performed before that code was executed. Enforc-
ing the execution model involves allowing each branch
to jump only to a specified set of targets.

• Un-Bypassable Sandboxing: shepherding guarantees
that sandboxing checks placed around any type of pro-
gram operation will never be dodged. This helps in
providing complete security, as an attacker that acquires
control of the execution, cannot sidestep the checks and
skip straightaway to the sandboxed operation. This is
possible due to the control transfer restrictions.

The shepherding techniques have been implemented in Dy-
namoRIO (Runtime Introspection and Optimization) [8, 9] a
run-time code modification system that allows code transfor-
mations on any portion of a program, while it executes.“The
resulting system imposes minimal or no performance over-
head, operates on unmodified native binaries, and requires no
special hardware or operating system support” [48].

To reduce interpretation overhead, program shepherding
performs security checks only once, and if the code complies
it is placed in acode cache. The code cache is protected from
malicious modification, so future executions of the trusted

cached code proceed with no security overhead. This leads
to efficient execution.

The program shepherding authors point out that program
shepherding could be used to allow services provided by the
operating system to be moved to more efficient user-level li-
braries.

They cite the Exokernel [24] class of operating systems as
an example, here program shepherding could enforce unique
entry points to the unprivileged libraries that provide the nor-
mal operating system operations, thereby giving users effi-
cient control of system resources without sacrificing security.

The DynamoRio binary package can be downloaded from
the DynamoRIO Release website [23]. It is beta software and
is supported on the following platforms: Linux (RedHat 7.2,
RedHat Enterprise Linux WS 3, Fedora Core 2, Fedora Core
3) and Windows (NT, XP, 2003, 2000).

4.4 Compiler Techniques

The compiler plays a crucial role in determining the execution
environment of a program. Numerous modifications to over-
come security vulnerabilities in programs can be made in the
compiler, without necessitating change in the programming
language in which the programs are developed [100]. These
techniques generally work by performing bounds checking on
C programs. The drawback however is that performance crit-
ical pointer-intensive programs will be considerably slowed
down [56].

To use these tools the compiler usually needs to be patched
with them. The protection offered by these tools can then be
enabled or disabled via specific flags.

SCC: The Safe C Compiler
SCC [2] is a C source-level program transformation sys-

tem which includes checks for all pointer and array accesses
so as to provide efficient detection of memory access errors in
unchecked C code. The technique is to havesafe pointer rep-
resentation by using a data structure that contains safety infor-
mation to model pointers; and by inserting run-time checks.

A safe pointer contains the value of the pointer along with
supplementary information calledobject attributes. Such
attributes include, base address, size of the memory object
in bytes, storage class (heap, local or global) and capability:
a unique identifier for the storage allocation of dynamically
allocated variables.

typedef {
<type > * value;

<type > * base;

unsigned size;

enum Heap=O, Local, Global storageClass;

16



int capability; / * plus FOREVER and NEVER* /

} SafePtr <type >;

Memory bounds errors are checked at run-time by com-
paring against the base and size fields of the extended pointer
structures.

The compiler transforms conventional C programs in three
steps:

• pointer conversion: pointer definitions and declarations
are transformed to the extended structures that incorpo-
rate object attributes.

• run-time check insertion: checks are inserted ahead of
every pointer and array access to detect memory access
errors.

• operator conversion: operations on pointers must be
modified to interact properly with the extended safe
pointer structure.

The run-time library prevents dangling pointer derefer-
ences by maintaining acapability store. The capability store
keeps track of all dynamically allocated storage by monitor-
ing allocation, deallocation and memory access events [53].
The set of capabilities in the capability store represents all the
dynamic storage that is currently active.

Safe-C requires few modifications to C source code and is
a good tool for making legacy code safe. It however provides
limited safety guarantees at a high price (130% to 540%) due
to exhaustive run-time checks (memory bounds checks and
capability database queries). Also, the extended pointer struc-
tures increase the spatial overhead, as each pointer now holds
additional information. It is mainly useful for program debug-
ging.

The source release for SCC version 1.0.0 is not publicly
available, details on its distribution can be obtained from its
webpage [77].

Fail-Safe ANSI-C compiler
The Fail-Safe ANSI-C compiler [66] supports the full

ANSI C standard while preventing unsafe operations. The
authors of the compiler define an “unsafe operation” to be
an “operation that leads to “undefined behavior”, such as ar-
ray boundary overrun and dereference of a pointer in a wrong
type.”

The compiler introduces run-time checking code into pro-
grams to prevent corruption of memory data structures by
buffer overflows or dangling pointer deferences. Violations
of these checks causes an error to be reported and program
execution to be terminated.

The compiler usesfat pointers which are a combination
of three values, denoted byptr(b, o, f) , whereb is the

string
growth

memory
higher addressed 

memory
lower addressed

growth
stack

function’s return address

arguments to
function

canary

saved frame pointer

local variables
(including buffers)

Figure 4: The StackGuard Stack Structure

base address of the contiguous region it is pointing to,o is the
offset to that region andf is a cast flag that indicates if the
pointermay refer to a value other than its static type.

The integer rendering of a pointer is its base + offset. When
a pointer is cast to an integer the result is afat integer of the
form –ptr(b, o, 1) , allowing the integer to be cast back
to a pointer if desired.

Dereferencing of invalid pointers (pointers that refer to a
location outside of a valid region) is prevented by insertion of
bounds checks. These checks use the base address and offset
of the pointer.

If the cast flag of a pointer is unset (i.e. f = 0), the cor-
rect type of value is guaranteed to be read and hence no type
checking is required during such pointer dereferences. Alter-
natively a value read using a pointer with f = 1 may have an
incorrect type, and hence type checking of such values is re-
quired.

Dangling pointer dereferences are prevented by marking
freed memory regions as “already released” but not actually
releasing them. The size field of such fields is set to zero. This
forbids access to that block, preventing dangling pointers.

Programs compiled by the current Fail-Safe C compiler
have been found to be 30% to 500% slower than the original
C programs [65].

Details about the Fail-Safe C Project can be obtained from
its webpage [27].

StackGuard
StackGuard [19] is an extension togcc (GNU C Compiler,

part of the GNU Compiler Collection), that can be configured
to either detect or prevent stack smashing attacks.

To modify the function’s return address, buffer overflow
attacks need to overwrite all the stack data contained between
the overflown buffer and the higher addressed function return
address. Stackguard attempts to detect a return address modi-

17



string
growth

memory
higher addressed 

memory
lower addressed

growth
stack

arguments to
function

local variables

buffers

canary

function’s return address

saved frame pointer

Figure 5: The ProPolice Stack Structure

fication by placing a “canary” (known value placed between a
buffer and control data) before the return address on the stack.
When the function returns, the canary value is checked prior
to jumping to the return address, if it has been altered an error
is reported and the program terminated, if it has not, the ca-
nary is removed and the function returns normally. The Stack-
Guard stack structure is shown in in Figure4.

Stackguard supports three types of canaries:

• Random canary – a random value (32-bit number) un-
known to the attacker that is generated at program ini-
tialization.

• Terminator canary – a known value built of termination
symbols for standard C library functions; 0 (NULL), CR,
LF, and -1 (EOF).

• Random XOR canaries – random canaries that are
XORed with the return address. If either value is cor-
rupted the canary value is wrong.

There are several ways to bypass StackGuard [74].
StackGuard existed as patches for gcc versions up to 2.95,

but is no longer available.

ProPolice
The “Stack-Smashing Protector” or SSP, also known as

ProPolice [25] is a patchset forgcc, designed to protect ap-
plications from buffer overflow attacks, based on a protection
method that automatically inserts checking code into an ap-
plication at compile time.

The main ideas are the rearranging of local variables so
as to place pointers before buffers in memory so as to avert
pointer corruption, and the skipping of instrumentation code
from some functions to reduce performance overhead.

ProPolice places the “canary” before the frame pointer so
as to detect attacks that leave the return address intact but
modify the frame pointer [49]. It supports only a random
XOR canary. The ProPolice stack structure is shown in in
Figure5.

Since it is a compile-time tool, it is able to alter the struc-
ture of the stackframe. It does this to place all buffers after
pointers to prevent pointer subversion that could be used to
overwrite arbitrary memory addresses. Functions are also pro-
vided protected from argument overwriting by creating local
copies of pointer arguments.

ProPolice was implemented as a patch to GCC 3.x and
is currently standard and enabled by default in some Unix
operating systems such as, OpenBSD, DragonFly BSD and
IPCop Linux distribution. It is also standard in Gentoo
Linux, but here the protection is not turned on by default.
An unintrusive implementation is included in the GCC 4.1
release.

RAD
Return Address Defender (RAD) [14] is a compiler patch

that stores a copy of return addresses in safe areas that it cre-
ates, and inserts necessary safeguarding code into function
prologues and epilogues to defend against buffer overflow at-
tacks. It does not require a change in the structure of stack-
frames, and so binary code generated by it is compatible with
other existing object files and libraries. The copy of the return
addresses are stored in a region of the data segment called Re-
turn Address Repository (RAR), the incorruptibility of which
is ensured by marking surrounding regions as read-only. Prior
to returning from a called function, the return address on the
stackframe is checked against the address in the RAR, only if
they match is the return address considered safe.

RAD provides two ways to protect the return addresses in
RAR:

• Minezone RAD : The mid-section of a global integer ar-
ray is declared as RAR, and the initial and final sec-
tions are marked as read-only (minezones). This prevents
overwriting the middle of the RAR, where the return ad-
dresses are stored.

• Read-Only RAD : The whole RAR is marked as read-
only and is writable only in function prologues when
a new address is to be added to it. As the RAR is
set as read-only, updating it in function prologues re-
quires adding two extra system calls to each function
call, which results in a serious performance penalty.

“MineZone RAD is more efficient while Read-Only RAR
is more secure” [14].

18



Possible address storage inconsistencies that could be
caused by the system callssetjmp() andlongjmp() are
also dealt with correctly.

System administrators are able to detect intrusions when
they happen as when an attack is detected, RAD sends out an
email in real-time before it terminates the attacked program.

Programs protected by RAD undergo a deterioration
in performance of between 1.01 to 1.31. It is a patch to
gcc-2.95.2; further details on availability can be got from
here [72].

PointGuard
PointGuard is a C compiler enhancement that seeks to pro-

tect pointers by encrypting them when they are stored in mem-
ory and decrypting them just prior to dereferencing, i.e. when
they are loaded into CPU registers, where they are not threat-
ened by overwriting, as registers are not directly address-
able thru calculated addresses. Attackers will still be able to
corrupt pointers stored in memory, but cannot produce pre-
dictable pointer values as they have no knowledge of the de-
cryption key.

“PointGuard critically depends on a load/store instruction
discipline” [18], where pointers are always loaded into regis-
ters before being dereferenced and operated upon.

The encryption key is generated when program execution
begins, using some source of randomness such as a value
from /dev/random . This key is then kept secret within
the process’s address space, but is available to other processes
that share memory. Encryption is done by XOR’ing pointers
against the key, and decryption is done in a similar fashion by
XOR’ing again against the same key. Brute force guessing is
impractical, as incorrect guesses cause the process to abort,
and the new process will have a different key.

A possible way to bypass PointGuard protection is to guess
the decryption key by causing the program to print out pointer
information via some other means.

The encryption has been kept simple so as to avoid perfor-
mance overheads and performance costs have been found to
be between 0%-20%.

PointGuard is no longer available.

4.5 Kernel and Operating System Alterations

Kernel and Operating system modifications try to prevent a
malicious user’s injected code from executing. The focus here
is not on finding and fixing exploitation of software bugs but
rather on prevention and containment of exploit techniques.

To use these tools the kernel of the operating system needs
to be patched with them and the system built and rebooted
with the patched kernel. Minor modifications might even
need to be made to some of the system configuration files.

The protection offered by these tools can usually be enabled
or disabled via specific flags.

Bhatkar, Sekar and DuVarney
Bhatkar et al. have implemented anaddress space random-

ization (ASR) technique, whereby the absolute locations as
well as relative distances of all code and data objects are ran-
domized at the start of program execution (i.e. different ran-
domizations each time the program is run). It is implemented
as a source-to-source transformation which is compatible with
legacy C code. Experimental results demonstrate an average
run-time overhead of about 11%. The approach has a limited
goal: “it only seeks to ensure that the results of any invalid
access are unpredictable” [76]

The approach is based on the address obfuscation [4]
concept, whose goal is to obscure the location of objects
in memory by rearranging their positions. The techniques
[4, 28, 69, 99] that have been developed to achieve this do
not provide comprehensive protection against all memory er-
ror exploits, and are vulnerable to relative-address attacks, in-
formation leakage attacks, and brute-force attacks [83]. This
approach aims at protecting against all known and unknown
memory error exploits.

The techniques used in achieving this randomization are
sketched below.

• Randomizing variables on the stack – at run-time the
positions of variables on the stack are continuously
changed. This is done via:

1. Shadow stack – arrays and structures are allocated
on a different stack, thereby preventing overflows
from corrupting return addresses or pointer vari-
ables. The allocation order of these buffer variables
is also varied for each call.

2. Randomizing the base of stackframes – to blur the
location of other data on the stack, the base of the
stack is randomized, and stack frames are separated
by random-sized gaps.

• Static data randomization – the location and relative or-
der of static variables is determined at the start of the
transformed program execution. Accesses to these static
variables are then converted to be carried out in an indi-
rect manner. This is done by converting the program to
only have static pointer variables that store the location
of these static variables. The static pointer variables are
stored in read-only memory to prevent against attacks.

• Code randomization – code is randomized at the func-
tion granularity level. Each function is associated with
a function pointer and every function call is transformed

19



into an indirect call via the function pointer. By updating
the function pointers to point to different locations of the
function body, the order of functions can be changed in
the executable. Function pointers are write-protected to
prevent against attacks.

In addition to these steps,“the base of the heap, gaps be-
tween heap allocations, and the location of functions in shared
libraries” [76] are randomized.

The tool has been built for RedHat Linux 9.0 and is
shipped under GPL.

Solar Designer’s Non-executable stack
Stack smashing attacks are based on overwriting a func-

tion’s return address on the stack to point to some arbitrary
code in the stack, which is executed when the function re-
turns. Solar Designer’s Linux kernel patch [55] makes the
stack segment non-executable so the operating system will not
allow instructions to be executed in the this portion of a user
process’s virtual address space, making buffer overflow vul-
nerabilities more difficult to exploit.

However, making the stack non-executable can cause cer-
tain programs (some Lisp compilers) that rely on its exe-
cutability to break [100]. The non-executable stack can-
not prevent buffer overflow attacks that do not use the stack
to place their attack code. Attack code injected into heap-
allocated or statically allocated buffers can be used as exploits.
The stack patch can also be circumvented by using a return-
to-libc attack [98].

The patch does not impose any performance overhead nor
require program recompilation. Its use however requires the
kernel of the operating system to be patched. The patch is
available for Linux 2.0.x, 2.2.x and 2.4.x.

PaX
PaX [68] is a Linux kernel patch that implements non-

executable stack and heap memory pages. It prevents execu-
tion of unsafe code by moderating access to memory pages
and is able to do so without interfering with execution of
proper code. Unlike Solar Designer’s non-executable stack
patch, PaX is able to protect the heap as well.

It implements least privilege protection for memory pages
i.e. only data in a processes’s address space that needs to be
executable will be granted execute permissions.

Pax provides protection in two ways – making all writable
memory pages non-executable (PAGEEXEC) and by using
address space layout randomization (ASLR). It uses ASLR
to randomize mmap()’ed library base addresses. This coun-
teracts many security exploits, such as buffer overflow and
return-to-libc attacks, but in effect reduces them to denial
of service (DoS) attacks. It incurs a small amount of over-
head [69].

Shacham et al. [83] have shown that Pax ASLR is not very
effective on 32-bit architectures. The randomization that it
introduces is not resistant to brute force attacks.

PaX is functional and effective on many CPU architectures,
including IA-32 (x86), IA-64, Alpha, PA-RISC, PowerPC,
SPARC and SPARC64.

4.6 Library Patches

Library patches help make programs that are dynamically-
linked safe without requiring them to be recompiled.

After the libraries have been installed, programs will need
to be either implicitly or explicitly linked to them at run-time.
The loader will look for these libraries and add the relevant
data from them into the process’s memory space.

Libsafe - Libverify
Libsafe - Libverify [3] are methods to overcome buffer

overflow attacks. Both methods are implemented as dynami-
cally loadable libraries and have performance overhead ranges
between 0% - 15%.

Libsafe replaces calls to known vulnerable library func-
tions with a comparable version that ensures that any buffer
overflows are contained within the local stackframe. It tries
to automatically approximate a safe upper limit on the size of
buffers by recognizing that such local buffers cannot extend
beyond the end of the current stack frame; i.e. it uses the call-
ing function’s frame pointer as an upper limit for writing to
stack variables. The substitute function then enforces these
boundaries, preventing the return address located on the stack
from being overwritten.

Libsafe does not need access to program source code, nor
does it require recompilation of binaries. It however fails to
provide protection against heap-based buffer overflow attacks
or to programs that do not use the standard C library functions
to copy into the buffer [84].

It does not substitute the standard C library; instead it re-
lies on the loader searching for it before the standard C library,
so that the safe LibSafe functions are used instead of the stan-
dard unsafe library functions. By suitably setting environment
variables LibSafe can be installed as the default library.

It is implemented on Linux and the source code is available
under the GNU Lesser General Public License from here [54].

Libverify inserts checks dynamically into a processes’
memory to implement a scheme that verifies a function’s
return address before it is used. Like Libsafe it works with
pre-compiled binaries. On entering a function, it copies the
return address onto a return address stack (canary stack ),
which is in the heap, and on exiting the function the saved
return address and the actual return address are compared. If
there is a mismatch, execution is halted and an alert raised.

20



It however does not protect the integrity of the canary stack.
Libverify does not require access to the source code of the
application, and hence can be used for legacy programs as
well.

ContraPolice
Heap overflows occur on buffers that are dynamically al-

located on the heap, e.g. by calling functions from the
malloc() family. ContraPolice [51], which is an extension
for libc, attempts to protect applications fromheap smash-
ing attacks, by protecting memory allocated on the heap from
buffer overflows.

ContraPolice places adecoy (analogous to a canary value)
before and after the allocated memory in the heap. It also
maintains a list of all memory blocks that were dynamically
allocated, including their base address and size. When a new
memory block is requested, besides being first allocated via
malloc() , it is also added to the list of dynamically allo-
cated memory blocks.

Before exiting a library function handling buffers, the ad-
dress of the buffer that is currently being handled is looked
up to see whether it is registered in the list of dynamically
allocated memory regions. If it is, a function is invoked to
check if thedecoy values before and after the allocated mem-
ory match. If they do not an error message is printed and
the execution of the program is halted. Decoy values are ran-
domly generated.

Since ContraPolice is an extension forlibc, it is bound to a
certainlibc implementation and (depending on thelibc) to a
platform. Currently, there is only a reference implementation
for dietlibc (a smalllibc for Linux) available.

FormatGuard
FormatGuard [17] is a patch toglibc that tries to prevent

format string attacks by calculating the sum of arguments that
a format string expects and compares this to the sum of argu-
ments that were actually passed. If the passed number is less
than the expected number, it is assumed to be an exploit and
the program is terminated.

FormatGuard implements a wrapper around calls to unsafe
library functions. The wrapper parses the format string to de-
termine if there is a difference in the expected number of argu-
ments and number of arguments demanded for by the format
string.

FormatGuard is no longer available.

Summary

Table1 summarizes the different countermeasures. A checked
vulnerability column against a specific tool does not necessar-

ily signify that the tool completely defends against that par-
ticular vulnerability. It only suggests that the tool has some
mechanism for dealing with that vulnerability. This could be
either by prevention, detection, mitigation or containment.

5 Conclusions

Enforcing security at the programming language level is of
prime importance to systems security, as majority of attacks
seek to exploit vulnerabilities in language constructs and im-
plementation. A vast majority of programming language re-
searchers maintain that the most effective way to address the
secure programming issues is by restricting the usage of C in
security-sensitive projects due to the overwhelming evidence
that it is an unsafe language and hence a bad choice. They rec-
ommend the use of the aforementioned safe languages to en-
force that certain programming semantics are preserved dur-
ing execution [85].

Type-safe programming languages ensure that security ex-
ploits caused by memory misuse, such as malicious code ex-
ecution, are prevented. They guarantee this via a number
of complementary safety properties, includingmemory safety
(programs can only access intended memory locations) and
flow safety(programs can only transfer execution-flow to rel-
evant program points).

Even so, most current type-safe languages are not the best
choice for systems programming, as they do not fulfill the de-
manding operational requirements required for these tasks –
performance, explicit memory management and control over
low-level data structures. Furthermore, porting or adapting
legacy code into these safe languages could be prohibitively
expensive.

Moreover when it comes to programmer productivity, ex-
perience is a major factor, switching to safe programming lan-
guages could add costs in terms of training and productivity
loss (at least till programmers are comfortable with the new
system).

A safe efficient language with the same data and control
abstractions as C, with tools to facilitate porting, would be
an acceptable alternative. Within C, a more robust standard
string library that performs automatic bounds and type check-
ing would be a great boon.

Finally, new techniques such as OS virtualization, are be-
coming ever more pervasive in deployed systems. By isolat-
ing applications from each other the security of the system as
a whole can be increased, preventing an attacker from exploit-
ing resources other than the ones being used by the compro-
mised application. Therefore by taking advantage of the novel
alternatives offered by modern systems, i.e. by combining vir-
tualization with secure programming languages and/or static

21



```````````Tool
Vulnerability Stack-based Heap-Based Dangling pointer Format string Integer

buffer overflows buffer overflows dereferences Attacks errors
Splint

√ √ √ √

ITS4
√ √ √

RATS
√ √ √

BOON
√ √

Purify
√ √

Valgrind
√ √

Systrace
√ √ √ √

SFI
√ √ √ √

Program
√ √ √ √ √

Shepherding
SCC

√ √ √

Fail-Safe
√ √ √

ANSI-C compiler
StackGuard

√

ProPolice
√

RAD
√

PointGuard
√ √ √ √

Bhatkar et al.
√ √ √ √ √

Solar Designer’s
√

Stack Patch
PaX

√ √ √ √ √

Libsafe -
√

Libverify
ContraPolice

√

FormatGuard
√

Table 1:Tools vs. Vulnerabilities they attempt to counteract
.

and dynamic analysis tools, an improved assortment of secure
applications could be developed.

Acknowledgments

The authors are grateful to Michael J. Fromberger for his in-
puts and insightful comments. We would also like to thank
Robert Brentrup and Scott Rotondo for reviewing and provid-
ing feedback on the paper. We are also grateful to Sun Mi-
crosystems for their support of this project. This paper does
not necessarily represent the views of our sponsors.

References
[1] Aleph One. Smashing The Stack For Fun And Profit.

Phrack, 7(49), November 1996.
http://www.phrack.org/phrack/49/P49-14 . 2

[2] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi.
Efficient detection of all pointer and array access errors. In
PLDI ’94: Proceedings of the ACM SIGPLAN 1994

conference on Programming language design and
implementation, pages 290–301, New York, NY, USA, 1994.
ACM Press.
http://doi.acm.org/10.1145/178243.178446 .
16

[3] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. InProc. of the 2000
Usenix Annual Technical Conference, Jun 2000.
http://www.usenix.org/publications/
library/proceedings/usenix2000/general/
full papers/baratloo/baratloo.pdf . 20

[4] S. Bhatkar, D.C. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a broad range
of memory error exploits. InProc. of the 12th Usenix
Security Symposium, Aug 2003.
http://www.usenix.org/events/sec03/tech/
full papers/bhatkar/bhatkar.pdf . 19

[5] blexim. Basic Integer Overflows.Phrack, 11(60), December
2002.http:
//www.phrack.org/phrack/60/p60-0x0a.txt . 3

22

http://www.phrack.org/phrack/49/P49-14
http://doi.acm.org/10.1145/178243.178446
http://www.usenix.org/publications/library/proceedings/usenix2000/general/full_papers/baratloo/baratloo.pdf
http://www.usenix.org/publications/library/proceedings/usenix2000/general/full_papers/baratloo/baratloo.pdf
http://www.usenix.org/publications/library/proceedings/usenix2000/general/full_papers/baratloo/baratloo.pdf
http://www.usenix.org/events/sec03/tech/full_papers/bhatkar/bhatkar.pdf
http://www.usenix.org/events/sec03/tech/full_papers/bhatkar/bhatkar.pdf
http://www.phrack.org/phrack/60/p60-0x0a.txt
http://www.phrack.org/phrack/60/p60-0x0a.txt


[6] Hans Boehm and Mark Weiser. Garbage Collection in an
Uncooperative Environment.Software Practice and
Experience, pages 807–820, September 1988.4

[7] BOON - Buffer Overrun detectiON.
http://www.cs.berkeley.edu/ ∼daw/boon/ . 12

[8] Derek Bruening, Evelyn Duesterwald, and Saman
Amarasinghe. Design and Implementation of a Dynamic
Optimization Framework for Windows. InACM Workshop
on Feedback-Directed and Dynamic Optimization, Austin,
Texas, December 2001.http://cag.lcs.mit.edu/
commit/papers/01/RIO-FDDO.pdf . 16

[9] Derek Bruening, Timothy Garnett, and Saman Amarasinghe.
An Infrastructure for Adaptive Dynamic Optimization. In
International Symposium on Code Generation and
Optimization, San Francisco, March 2003.
http://cag.lcs.mit.edu/commit/papers/03/
RIO-adaptive-CGO03.pdf . 16

[10] Bulba and Kil3r. Bypassing Stackguard and Stackshield.
Phrack, 10(56), May 2000.
http://www.phrack.org/phrack/56/p56-0x05 .
2

[11] C− >Haskell, An Interface Generator for Haskell.
http://www.cse.unsw.edu.au/ ∼chak/
haskell/c2hs/ . 8

[12] CCured Documentation.
http://manju.cs.berkeley.edu/ccured/ . 4

[13] CERT/CC Statistics 1988-2005.http:
//www.cert.org/stats/cert stats.html . 1

[14] Tzi cker Chiueh and Fu-Hau Hsu. RAD: A Compile-Time
Solution to Buffer Overflow Attacks. InICDCS, pages
409–417, 2001.http://www.computer.org/
proceedings/icdcs/1077/10770409abs.htm . 18

[15] Jeremy Condit, Matthew Harren, Scott McPeak, George C.
Necula, and Westley Weimer. CCured in the real world. In
PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and
implementation, pages 232–244, New York, NY, USA, 2003.
ACM Press.
http://doi.acm.org/10.1145/781131.781157 .
5

[16] Matt Conover. w00w00 on Heap Overflows.
http://www.w00w00.org/files/articles/
heaptut.txt , 1999.2

[17] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman,
M. Frantzen, and J. Lokier. FormatGuard: Automatic
protection from printf format string vulnerabilities. InProc.
of the 10th Usenix Security Symposium, Aug 2001.
http://www.usenix.org/events/sec01/
full papers/cowanbarringer/
cowanbarringer.pdf . 3, 21

[18] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuardTM : Protecting pointers from buffer overflow

vulnerabilities. InProc. of the 12th Usenix Security
Symposium, Aug 2003.
http://www.usenix.org/events/sec03/tech/
full papers/cowan/cowan.pdf . 19

[19] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:
Automatic adaptive detection and prevention of
buffer-overflow attacks. InProc. of the 7th Usenix Security
Symposium, pages 63–78, Jan 1998.
http://www.usenix.org/publications/
library/proceedings/sec98/full papers/
cowan/cowan.pdf . 17

[20] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer
overflows: Attacks and defenses for the vulnerability of the
decade. InDARPA Information Survivability Conference &
Exposition – Volume 2, pages 119–129, Jan 2000.10

[21] Cyclone - The Language.
http://cyclone.thelanguage.org/ . 5

[22] Cpogramming.com – Writing Secure Code.http:
//cprogramming.com/tutorial/secure.html . 2

[23] The DynamoRIO Collaboration.
http://www.cag.lcs.mit.edu/dynamorio/ . 16

[24] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole
Jr. Exokernel: an operating system architecture for
application-level resource management. InProceedings of
the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95), pages 251–266, Copper Mountain Resort,
Colorado, December 1995.16

[25] Hiroaki Etoh and Kunikazu Yoda. Protecting from
stack-smashing attacks.http://www.research.ibm.
com/trl/projects/security/ssp/main.html ,
June 2000.18

[26] David Evans and David Larochelle. Improving Security
Using Extensible Lightweight Static Analysis.IEEE Softw.,
19(1):42–51, 2002.
http://dx.doi.org/10.1109/52.976940 . 11

[27] About Fail-Safe C.http://web.yl.is.s.u-tokyo.
ac.jp/ ∼oiwa/FailSafe-C.html . 17

[28] S. Forrest, A. Somayaji, and D.H. Ackley. Building diverse
computer systems. InProc. of the 6th IEEE Workshop on Hot
Topics in Operating Systems, pages 67–72, 1997.
http://www.cs.unm.edu/ ∼immsec/
publications/hotos-97.pdf . 19

[29] Fortify Extra - A Taxonomy of Software Security Errors.
http://vulncat.fortifysoftware.com/ . 3

[30] Fortify Source Code Analysis Suite.http://www.
fortifysoftware.com/products/sca.jsp . 13

[31] Sudhakar Govindavajhala and Andrew W. Appel. Using
Memory Errors to Attack a Virtual Machine. InSP ’03:
Proceedings of the 2003 IEEE Symposium on Security and
Privacy, page 154, Washington, DC, USA, 2003. IEEE
Computer Society.http://www.cs.princeton.edu/
sip/pub/memerr.pdf . 8

23

http://www.cs.berkeley.edu/~daw/boon/
http://cag.lcs.mit.edu/commit/papers/01/RIO-FDDO.pdf
http://cag.lcs.mit.edu/commit/papers/01/RIO-FDDO.pdf
http://cag.lcs.mit.edu/commit/papers/03/RIO-adaptive-CGO03.pdf
http://cag.lcs.mit.edu/commit/papers/03/RIO-adaptive-CGO03.pdf
http://www.phrack.org/phrack/56/p56-0x05
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://manju.cs.berkeley.edu/ccured/
http://www.cert.org/stats/cert_stats.html
http://www.cert.org/stats/cert_stats.html
http://www.computer.org/proceedings/icdcs/1077/10770409abs.htm
http://www.computer.org/proceedings/icdcs/1077/10770409abs.htm
http://doi.acm.org/10.1145/781131.781157
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.usenix.org/events/sec01/full_papers/cowanbarringer/cowanbarringer.pdf
http://www.usenix.org/events/sec01/full_papers/cowanbarringer/cowanbarringer.pdf
http://www.usenix.org/events/sec01/full_papers/cowanbarringer/cowanbarringer.pdf
http://www.usenix.org/events/sec03/tech/full_papers/cowan/cowan.pdf
http://www.usenix.org/events/sec03/tech/full_papers/cowan/cowan.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
http://cyclone.thelanguage.org/
http://cprogramming.com/tutorial/secure.html
http://cprogramming.com/tutorial/secure.html
http://www.cag.lcs.mit.edu/dynamorio/
http://www.research.ibm.com/trl/projects/security/ssp/main.html
http://www.research.ibm.com/trl/projects/security/ssp/main.html
http://dx.doi.org/10.1109/52.976940
http://web.yl.is.s.u-tokyo.ac.jp/~oiwa/FailSafe-C.html
http://web.yl.is.s.u-tokyo.ac.jp/~oiwa/FailSafe-C.html
http://www.cs.unm.edu/~immsec/publications/hotos-97.pdf
http://www.cs.unm.edu/~immsec/publications/hotos-97.pdf
http://vulncat.fortifysoftware.com/
http://www.fortifysoftware.com/products/sca.jsp
http://www.fortifysoftware.com/products/sca.jsp
http://www.cs.princeton.edu/sip/pub/memerr.pdf
http://www.cs.princeton.edu/sip/pub/memerr.pdf


[32] GreenCard: A Haskell FFI Preprocessor.
http://haskell.org/greencard/ . 8

[33] Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W.
Hicks, Yanling Wang, and James Cheney. Region-Based
Memory Management in Cyclone. InPLDI, pages 282–293,
2002.
http://doi.acm.org/10.1145/512529.512563 .
5

[34] Haskell.http:
//www.haskell.org/haskellwiki/Haskell . 8

[35] The Haskell 98 Foreign Function Interface 1.0: An
Addendum to the Haskell 98 Report.http:
//www.cse.unsw.edu.au/ ∼chak/haskell/ffi/ .
8

[36] The Haskell FFI Binding Modules Generator (HSFFIG).
http://hsffig.sourceforge.net/ . 8

[37] HaskellDirect.http://haskell.org/hdirect/ . 8

[38] R. Hastings and B. Joyce. Purify: Fast Detection of Memory
Leaks and Access Errors. InProc. of the Winter 1992
USENIX Conference, pages 125–138, San Francisco,
California, 1991.14

[39] Jason Hickey. Introduction to the Objective Caml
Programming Language.http://www.cs.caltech.
edu/courses/cs134/cs134b/book.pdf . 7

[40] IBM Rational Purify.http://www-306.ibm.com/
software/awdtools/purify/ . 14

[41] Igor Dobrovitski. Exploit for CVS double free() for Linux
pserver, February 2003.http://seclists.org/
lists/bugtraq/2003/Feb/0042.html . 2

[42] ITS4 - Software Security Tool.
http://www.cigital.com/its4/ . 11

[43] Daniel Jackson and Martin C. Rinard. Software Analysis: A
Roadmap. InICSE - Future of SE Track, pages 133–145,
2000.
http://doi.acm.org/10.1145/336512.336545 .
13

[44] White Paper - The Java Language Environment.
http://java.sun.com/docs/white/langenv/
Intro.doc.html#318 . 8

[45] JavaTM 2 Platform Security Architecture.http:
//java.sun.com/j2se/1.5.0/docs/guide/
security/spec/security-spec.doc.html . 8

[46] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. InProc. of the 2002
Usenix Annual Techincal Conference, pages 275–288, Jun
2002.
http://www.research.att.com/projects/
cyclone/papers/cyclone-safety.pdf . 5, 6

[47] Vladimir Kiriansky, Derek Bruening, and Saman
Amarasinghe. Secure Execution Via Program Shepherding.
In Proc. of the 11th Usenix Security Symposium, San

Francisco, August 2002.http://cag.lcs.mit.edu/
commit/papers/02/RIO-security-usenix.pdf .
16

[48] Vladimir Kiriansky, Derek Bruening, and Saman
Amarasinghe. Execution Model Enforcement Via Program
Shepherding. MIT/LCS Technical Memo MIT/LCS
Technical Memo LCS-TM-638, Massachusetts Institute of
Technology, Cambridge, MA, May 2003.
http://cag.lcs.mit.edu/commit/papers/03/
RIO-security-TM-638.pdf . 16

[49] klog. The Frame Pointer Overwrite.Phrack, 9(55), Sep
1999.
http://www.phrack.org/phrack/55/P55-08 . 2,
18

[50] Eugene E. Kohlbecker. Syntactic Extensions in the
Programming Language Lisp, 1986.10

[51] Andreas Krennmair. ContraPolice: a libc Extension for
Protecting Applications from Heap-Smashing Attacks.
http://synflood.at/contrapolice.html , Nov
2003.21

[52] David Larochelle and David Evans. Statically detecting
likely buffer overflow vulnerabilities. In10th USENIX
Security Symposium, pages 177–190. University of Virginia,
Department of Computer Science, USENIX Association,
August 2001.http://www.usenix.org/events/
sec01/larochelle.html . 11

[53] Peng Li. Safe Systems Programming Languages, Oct 2004.
http://www.seas.upenn.edu/ ∼lipeng/
homepage/papers/wpeii.pdf . 17

[54] Avaya Labs Research Libsafe.http://www.research.
avayalabs.com/gcm/usa/en-us/initiatives/
all/nsr.htm&Filter=ProjectTitle:
Libsafe&Wrapper=LabsProjectDetails&View=
LabsProjectDetails . 20

[55] Linux kernel patch from the Openwall Project.http:
//www.openwall.com/linux/README.shtml . 20

[56] Gary McGraw and John Viega. Improving host security with
system call policies.
http://www-128.ibm.com/developerworks/
library/s-buffer-defend.html , 2000.16

[57] The Memory Management Glossary.http://www.
memorymanagement.org/glossary/d.html . 2

[58] Meta-Level Compilation.
http://metacomp.stanford.edu/ . 12

[59] Microsogt .NET Homepage.http:
//www.microsoft.com/net/default.mspx . 9

[60] Microsogt Visual Studio Development Center.
http://msdn.microsoft.com/vstudio/ . 9

[61] Mono Project.
http://www.mono-project.com/Main Page. 9

24

http://haskell.org/greencard/
http://doi.acm.org/10.1145/512529.512563
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://hsffig.sourceforge.net/
http://haskell.org/hdirect/
http://www.cs.caltech.edu/courses/cs134/cs134b/book.pdf
http://www.cs.caltech.edu/courses/cs134/cs134b/book.pdf
http://www-306.ibm.com/software/awdtools/purify/
http://www-306.ibm.com/software/awdtools/purify/
http://seclists.org/lists/bugtraq/2003/Feb/0042.html
http://seclists.org/lists/bugtraq/2003/Feb/0042.html
http://www.cigital.com/its4/
http://doi.acm.org/10.1145/336512.336545
http://java.sun.com/docs/white/langenv/Intro.doc.html#318
http://java.sun.com/docs/white/langenv/Intro.doc.html#318
http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-spec.doc.html
http://www.research.att.com/projects/cyclone/papers/cyclone-safety.pdf
http://www.research.att.com/projects/cyclone/papers/cyclone-safety.pdf
http://cag.lcs.mit.edu/commit/papers/02/RIO-security-usenix.pdf
http://cag.lcs.mit.edu/commit/papers/02/RIO-security-usenix.pdf
http://cag.lcs.mit.edu/commit/papers/03/RIO-security-TM-638.pdf
http://cag.lcs.mit.edu/commit/papers/03/RIO-security-TM-638.pdf
http://www.phrack.org/phrack/55/P55-08
http://synflood.at/contrapolice.html
http://www.usenix.org/events/sec01/larochelle.html
http://www.usenix.org/events/sec01/larochelle.html
http://www.seas.upenn.edu/~lipeng/homepage/papers/wpeii.pdf
http://www.seas.upenn.edu/~lipeng/homepage/papers/wpeii.pdf
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://www.openwall.com/linux/README.shtml
http://www.openwall.com/linux/README.shtml
http://www-128.ibm.com/developerworks/library/s-buffer-defend.html
http://www-128.ibm.com/developerworks/library/s-buffer-defend.html
http://www.memorymanagement.org/glossary/d.html
http://www.memorymanagement.org/glossary/d.html
http://metacomp.stanford.edu/
http://www.microsoft.com/net/default.mspx
http://www.microsoft.com/net/default.mspx
http://msdn.microsoft.com/vstudio/
http://www.mono-project.com/Main_Page


[62] George C. Necula, Jeremy Condit, Matthew Harren, Scott
McPeak, and Westley Weimer. CCured: type-safe retrofitting
of legacy software.ACM Trans. Program. Lang. Syst.,
27(3):477–526, 2005.http:
//doi.acm.org/10.1145/1065887.1065892 . 4

[63] The Caml Language.http://caml.inria.fr/ . 7

[64] The OCaml Tutorial.
http://www.ocaml-tutorial.org/the basics .
7

[65] Yutaka Oiwa. Implementation of a Fail-Safe ANSI C
Compiler.http://web.yl.is.s.u-tokyo.ac.jp/
∼oiwa/thesis.pdf , Dec 2004.17

[66] Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori
Yonezawa. Fail-safe ANSI-C compiler: An approach to
making c programs secure.http://www.kb.ecei.
tohoku.ac.jp/ ∼sumii/pub/safe-C.pdf . 10, 17

[67] Ounce Labs – Prexis/Engine.http:
//www.ouncelabs.com/prexis engine.html . 13

[68] Homepage of The PaX Team.
http://pax.grsecurity.net/ . 20

[69] PaX Project. The PaX project, Nov 2003.
http://pax.grsecurity.net/docs/pax.txt .
19, 20

[70] Coverity Prevent.http:
//www.coverity.com/products/prevent.html .
12

[71] N. Provos. Improving Host Security with System Call
Policies. InProc. of the 12th Usenix Security Symposium,
Aug 2003.http://www.usenix.org/events/
sec03/tech/full papers/provos/provos.pdf .
15

[72] RAD: A Compiler Time Solution to Buffer Overflow
Attacks.http:
//www.ecsl.cs.sunysb.edu/RAD/index.html .
19

[73] RATS - Rough Auditing Tool for Security.
http://www.securesoftware.com/resources/
download rats.html . 12

[74] Gerardo Richarte. Four different tricks to bypass StackShield
and StackGuard protection.http://www2.corest.
com/files/files/11/StackguardPaper.pdf ,
April-June 2002.18

[75] rix. Smashing C++ VPTRs.Phrack, 0xa, May 2000.
http://www.phrack.org/show.php?p=56&a=8 . 2

[76] R. Sekar Sandeep Bhatkar and Daniel C. DuVarney. Efficient
Techniques for Comprehensive Protection from Memory
Error Exploits. InProc. of the 14th Usenix Security
Symposium, Aug 2005.
http://www.seclab.cs.sunysb.edu/seclab/
pubs/papers/usenix sec05.pdf . 19, 20

[77] SCC: The Safe C Compiler.
http://www.cs.wisc.edu/ ∼austin/scc.html .
17

[78] The Scheme Programming Language.http:
//www.swiss.ai.mit.edu/projects/scheme/ . 9

[79] Scheme Requests for Implementation.
http://srfi.schemers.org/ . 10

[80] Resources for the Scheme programming language.
http://www.schemers.org/ . 10

[81] Fred B. Schneider. Least privilege and more.
j-IEEE-SEC-PRIV, 1(5):55–59, September/October 2003.14

[82] Security and the Java Platform.
http://java.sun.com/security/index.jsp . 8,
9

[83] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effectiveness
of address-space randomization. InACM Conference on
Computer and Communications Security, pages 298–307,
2004.http:
//doi.acm.org/10.1145/1030083.1030124 . 19,
20

[84] Istvan Simon. A Comparative Analysis of Methods of
Defense against Buffer Overflow Attacks.
http://www.mcs.csuhayward.edu/ ∼simon/
security/boflo.html , Jan 2001.20

[85] Christian Skalka. Programming Languages and Systems
Security.http://ieeexplore.ieee.org/iel5/
8013/31002/01439509.pdf?tp=&arnumber=
1439509&isnumber=31002 . 21

[86] Splint - Secure Programming Lint.
http://www.splint.org/ . 11

[87] Splint User’s Manual.http:
//www.splint.org/downloads/manual.pdf . 11

[88] Systrace Policy Generation.
http://www.systrace.org/ . 15

[89] Valgrind Home.http://valgrind.org/ . 14

[90] Microsoft. Vault: a programming language for reliable
systems.
http://research.microsoft.com/vault/ . 6

[91] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A
static vulnerability scanner for C and C++ code. InACSAC
’00: Proceedings of the 16th Annual Computer Security
Applications Conference, page 257, Washington, DC, USA,
2000. IEEE Computer Society.http://www.cigital.
com/papers/download/its4.pdf . 4, 11

[92] John Viega and Gary McGraw.Building secure software:
how to avoid security problems the right way.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.15

25

http://doi.acm.org/10.1145/1065887.1065892
http://doi.acm.org/10.1145/1065887.1065892
http://caml.inria.fr/
http://www.ocaml-tutorial.org/the_basics
http://web.yl.is.s.u-tokyo.ac.jp/~oiwa/thesis.pdf
http://web.yl.is.s.u-tokyo.ac.jp/~oiwa/thesis.pdf
http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/safe-C.pdf
http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/safe-C.pdf
http://www.ouncelabs.com/prexis_engine.html
http://www.ouncelabs.com/prexis_engine.html
http://pax.grsecurity.net/
http://pax.grsecurity.net/docs/pax.txt
http://www.coverity.com/products/prevent.html
http://www.coverity.com/products/prevent.html
http://www.usenix.org/events/sec03/tech/full_papers/provos/provos.pdf
http://www.usenix.org/events/sec03/tech/full_papers/provos/provos.pdf
http://www.ecsl.cs.sunysb.edu/RAD/index.html
http://www.ecsl.cs.sunysb.edu/RAD/index.html
http://www.securesoftware.com/resources/download_rats.html
http://www.securesoftware.com/resources/download_rats.html
http://www2.corest.com/files/files/11/StackguardPaper.pdf
http://www2.corest.com/files/files/11/StackguardPaper.pdf
http://www.phrack.org/show.php?p=56&a=8
http://www.seclab.cs.sunysb.edu/seclab/pubs/papers/usenix_sec05.pdf
http://www.seclab.cs.sunysb.edu/seclab/pubs/papers/usenix_sec05.pdf
http://www.cs.wisc.edu/~austin/scc.html
http://www.swiss.ai.mit.edu/projects/scheme/
http://www.swiss.ai.mit.edu/projects/scheme/
http://srfi.schemers.org/
http://www.schemers.org/
http://java.sun.com/security/index.jsp
http://doi.acm.org/10.1145/1030083.1030124
http://doi.acm.org/10.1145/1030083.1030124
http://www.mcs.csuhayward.edu/~simon/security/boflo.html
http://www.mcs.csuhayward.edu/~simon/security/boflo.html
http://ieeexplore.ieee.org/iel5/8013/31002/01439509.pdf?tp=&arnumber=1439509&isnumber=31002
http://ieeexplore.ieee.org/iel5/8013/31002/01439509.pdf?tp=&arnumber=1439509&isnumber=31002
http://ieeexplore.ieee.org/iel5/8013/31002/01439509.pdf?tp=&arnumber=1439509&isnumber=31002
http://www.splint.org/
http://www.splint.org/downloads/manual.pdf
http://www.splint.org/downloads/manual.pdf
http://www.systrace.org/
http://valgrind.org/
http://research.microsoft.com/vault/
http://www.cigital.com/papers/download/its4.pdf
http://www.cigital.com/papers/download/its4.pdf


[93] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken. A First Step towards Automated Detection
of Buffer Overrun Vulnerabilities. InNetwork and
Distributed System Security Symposium, pages 3–17, San
Diego, CA, February 2000.1

[94] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken. A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities. InNDSS, 2000.
http://www.isoc.org/isoc/conferences/
ndss/2000/proceedings/039.pdf . 12

[95] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-Based Fault Isolation.
ACM SIGOPS Operating Systems Review, 27(5):203–216,
December 1993.15

[96] J. A. Whittaker and H. H. Thompson.How to Break Software
Security. Addison Wesley, 2003.4

[97] Wind Driver.
http://www.windriver.com/alliances/
newdirectory/product.html?ID=661 . 12

[98] Rafal Wojtczuk. Defeating Solar Designers Non-executable
Stack Patch.http://www.insecure.org/sploits/
non-executable.stack.problems.html , 1998.20

[99] J. Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime
randomization for security. Technical Report
UILU-ENG-03-2207, University of Illinois at
Urbana-Champaign, May 2003.
http://www.crhc.uiuc.edu/ ∼junxu/Papers/
TechReport TRRUILU-ENG-03-2207.pdf . 19

[100] Wouter Joosen Yves Younan and Frank Piessens. Code
injection in C and C++: A Survey of Vulnerabilities and
Countermeasures.
http://www.fort-knox.org/CW386.pdf , Jul
2004.1, 3, 6, 11, 16, 20

26

http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/039.pdf
http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/039.pdf
http://www.windriver.com/alliances/newdirectory/product.html?ID=661
http://www.windriver.com/alliances/newdirectory/product.html?ID=661
http://www.insecure.org/sploits/non-executable.stack.problems.html
http://www.insecure.org/sploits/non-executable.stack.problems.html
http://www.crhc.uiuc.edu/~junxu/Papers/TechReport_TRR_UILU-ENG-03-2207.pdf
http://www.crhc.uiuc.edu/~junxu/Papers/TechReport_TRR_UILU-ENG-03-2207.pdf
http://www.fort-knox.org/CW386.pdf

	Introduction
	Survey of Vulnerabilities
	Buffer Overflows
	Dangling Pointer Errors
	Format String Bugs
	Integer Inaccuracies
	Type-cast Mismatches
	Memory Leaks
	Race Conditions

	Safe Programming Languages
	CCured
	Cyclone
	Vault
	OCaml
	Haskell
	Java
	.NET Framework Architecture
	Scheme

	Overcoming Security Flaws in C
	Static Analysis of Source Code
	Analysis of semantically commented code
	Analysis of code lacking semantic comments

	Dynamic Analysis Tools
	Sandbox Security
	Compiler Techniques
	Kernel and Operating System Alterations
	Library Patches

	Conclusions

